Startseite Ionic gelated β-cyclodextrin-biotin-carboxymethyl chitosan nanoparticles prepared as carrier for oral delivery of protein drugs
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Ionic gelated β-cyclodextrin-biotin-carboxymethyl chitosan nanoparticles prepared as carrier for oral delivery of protein drugs

  • Kuanmin Chen , Suoju He , Hui Wang , Song Zhang , Lizhen Yu , Yue Zhang , Ezzat H Elshazly , Lixia Ke EMAIL logo und Renmin Gong EMAIL logo
Veröffentlicht/Copyright: 30. April 2020
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper, the β-cyclodextrin (β-CD) and biotin (Bi) were successfully grafted onto carboxymethyl chitosan (CMCS). And then the β-CD-Bi-CMCS nanoparticles (NPs) were prepared as oral nano-delivery carrier of protein drugs by ionic gelation method. The morphological feature of fabricated drug carrier was determined by dynamic light scattering and transmission electron microscopy. The result showed that the prepared NPs presented spherical structure with an average diameter of 138 nm. Bovine serum albumin (BSA) was selected as model protein drug that was entrapped in prepared drug carrier with satisfactory entrapment efficiency (79.18%) and loading content (3.96%). The drug release profiles of BSA/β-CD-Bi-CMCS NPs were studied at different pH environment for simulated gastric fluid (SGF), simulated intestinal fluid (SIF) and simulated colonic fluid (SCF). It was found that the BSA/β-CD-Bi-CMCS NPs displayed a pH dependent drug release profiles. After 72 h, the cumulative release amount of BSA in SGF, SIF, and SCF was about 20.57, 74.46, and 91%, respectively. Furthermore, the enzymatic degradation and cytotoxicity studies showed the synthesized β-CD-Bi-CMCS NPs had high chemical stability and biocompatibility. This work indicated that the β-CD-Bi-CMCS NPs had the potentiality as promising nanocarriers for oral delivery of protein drugs.


Corresponding authors: Renmin Gong Renmin Gong,College of Life Science, Anhui Normal University, Wuhu, 241000, PR China, E-mail: ; and Lixia Ke, College of Life Science, Anhui Normal University, Wuhu, 241000, PR China,

Funding source: The Innovation Team of Scientific Research Platform in Anhui Universities

Funding source: The Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, Anhui Normal University

Funding source: The Key Laboratory of Bioresource Protection and Utilization of Anhui Province

Funding source: The Key Laboratory of Biotic Environment and Ecological Safety of Anhui Province

  1. Research funding: This work was financially supported by the Innovation Team of Scientific Research Platform in Anhui Universities, the Key Laboratory of Bioresource Protection and Utilization of Anhui Province, the Key Laboratory of Biotic Environment and Ecological Safety of Anhui Province, and the Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, Anhui Normal University.

References

1. Craik D. J., Fairlie D. P., Liras S., Price D. Chem. Biol. Drug Des. 2013, 81, 136–147. https://doi.org/10.1111/cbdd.12055.Suche in Google Scholar

2. Fosgerau K., Hoffmann T. Drug Discov. Today 2015, 20, 122–128.10.1016/j.drudis.2014.10.003Suche in Google Scholar PubMed

3. Mahato R. I., Narang A. S., Thoma L., Miller D. D. Crit. Rev. Ther. Drug Carrier Syst. 2003, 20, 153–214.10.1615/CritRevTherDrugCarrierSyst.v20.i23.30Suche in Google Scholar PubMed

4. Hamman J. H., Enslin G. M., Kotzé A. F. Biodrugs 2005, 19, 165–177.10.2165/00063030-200519030-00003Suche in Google Scholar PubMed

5. Morishita M., Peppas N. A. Drug Discov. Today 2006, 11, 905–910.10.1016/j.drudis.2006.08.005Suche in Google Scholar PubMed

6. Bakhru S. H., Furtado S., Morello A. P., Mathiowitz E. Adv. Drug Deliver. Rev. 2013, 65, 811–821.10.1016/j.addr.2013.04.006Suche in Google Scholar PubMed

7. Li L., Jiang G. H., Yu W. J., Liu D. P., Chen H., Liu Y. K., Huang Q., Tong Z. Z., Yao J. M., Kong X. D. Mater. Sci. Eng. C. 2016, 69, 37–45.10.1016/j.msec.2016.06.059Suche in Google Scholar PubMed

8. Li L., Jiang G. H., Yu W. J., Liu D. P., Chen H., Liu Y. K., Huang Q., Tong Z. Z., Yao J. M., Kong X. D. Mater. Sci. Eng. C. 2017, 70, 278–286.10.1016/j.msec.2016.08.083Suche in Google Scholar PubMed

9. Xu B., Jiang G. H., Yu W. J., Liu D. P., Liu Y. K., Kong X. D., Yao J. M. Mater. Sci. Eng. C. 2017, 78, 420–428.10.1016/j.msec.2017.04.113Suche in Google Scholar PubMed

10. Liu D. P., Jiang G. H., Yu W. J., Li L., Tong Z. Z., Kong X. D., Yao J. M. Mater. Lett. 2017, 188, 263–266.10.1016/j.matlet.2016.10.117Suche in Google Scholar

11. Kumar M. N. V. R. React. Funct. Polym. 2000, 46, 1–27.10.1016/S1381-5148(00)00038-9Suche in Google Scholar

12. Liu K., Chen L. H., Huang L. L., Lai Y. N. Carbohydr. Polym. 2016, 151, 1115–1119.10.1016/j.carbpol.2016.06.071Suche in Google Scholar

13. Abbasian M., Bighlari P., Mahmoodzadeh F., Acar M. H., Jaymand M. J. Appl. Polym. Sci. 2019. https://doi.org/10.1002/app.48037.Suche in Google Scholar

14. Chuan D., Jin T., Fan R. R., Zhou L. X., Guo G. Adv. Colloid Interface Sci. 2019, 268, 25–38.10.1016/j.cis.2019.03.007Suche in Google Scholar

15. Ehterami A., Salehi M., Farzamfar S., Samadian H., Vaez A., Ghorbani S., Ai J., Sahrapeyma H. J. Drug Deliv. Sci. Tec. 2019, 51, 204–213.10.1016/j.jddst.2019.02.032Suche in Google Scholar

16. Ehterami A., Salehi M., Farzamfar S., Vaez A., Samadian H., Sahrapeymae H., Mirzaii M., Ghorbani S., Goodarzi A. Int. J. Biol. Macromol. 2018, 117, 601–609.10.1016/j.ijbiomac.2018.05.184Suche in Google Scholar

17. Prabaharan M., Jayakumar R. Int. J. Biol. Macromol. 2009, 44, 320–325.10.1016/j.ijbiomac.2009.01.005Suche in Google Scholar

18. Abbasian M., Jaymand M., Niroomand P., Farnoudian-Habibi A., Karaj-Abad S. G. Int. J. Biol. Macromol. 2017, 95, 393–403.10.1016/j.ijbiomac.2016.11.075Suche in Google Scholar

19. Charoenchaitrakool M., Dehghani F., Foster N. R. Int. J. Pharmaceut. 2002, 239, 103–112.10.1016/S0378-5173(02)00078-9Suche in Google Scholar

20. Ding H. Y., Chao J. B., Zhang G. M., Shuang S. M., Pan J. H. Spectrochim. Acta A 2003, 59, 3421–3429.10.1016/S1386-1425(03)00176-8Suche in Google Scholar

21. Chen M., Diao G. W., Zhang E. R. Chemosphere 2006, 63, 522–529.10.1016/j.chemosphere.2005.08.033Suche in Google Scholar

22. Karathanos V. T., Mourtzinos I., Yannakopoulou K., Andrikopoulos N. K. Food Chem. 2007, 101, 652–658.10.1016/j.foodchem.2006.01.053Suche in Google Scholar

23. Chen X. L., Chen R., Guo Z. Y., Li C. P., Li P. C. Food Chem. 2007, 101, 1580–1584.10.1016/j.foodchem.2006.04.020Suche in Google Scholar

24. Wang J., Cao Y. P., Sun B. G., Wang C. T. Food Chem. 2011, 127, 1680–1685.10.1016/j.foodchem.2011.02.036Suche in Google Scholar

25. Sambasevam K. P., Mohamad S., Sarih N. M., Ismail N. A. Int. J. Mol. Sci. 2013, 14, 3671–3682.10.3390/ijms14023671Suche in Google Scholar

26. Thacharodi D., Rao K. P. Biomaterials 1995, 16, 145–148.10.1016/0142-9612(95)98278-MSuche in Google Scholar

27. Tozaki H., Komoike J., Tada C., Maruyama T., Terabe A., Suzuki T., Yamamoto A., Muranishi S. J. pharm. Sci. 1997, 86, 1016–1021.10.1021/js970018gSuche in Google Scholar

28. De Campos A. M., Diebold Y., Carvalho E. L. S., Sánchez A., Alonso M. J. Pharm. Res. 2004, 21, 803–810.10.1023/B:PHAM.0000026432.75781.cbSuche in Google Scholar

29. Rawat W., Jain S. K. Eur. J. Pharm. Biopharm. 2004, 57, 263–267.10.1016/j.ejpb.2003.10.020Suche in Google Scholar

30. Wen X. H., Tan F., Jing Z. J., Liu Z. Y. J. Pharmaceuti. Biomed. 2004, 34, 517–523.10.1016/S0731-7085(03)00576-4Suche in Google Scholar

31. Machín R., Isasi J. R., Vélaz I. Carbohydr. Polym. 2012, 87, 2024–2030.10.1016/j.carbpol.2011.10.024Suche in Google Scholar

32. Fàbregas A., Miñarro M., Montoya E. G., Lozano P. P., Carrillo C., Sarrate R., Sánchez N., Ticó J. R., Suñé-Negre J. M. Int. J. Pharm. 2013, 446, 199–204.10.1016/j.ijpharm.2013.02.015Suche in Google Scholar

33. Zhang J. X., Ma P. X. Adv. Drug Deliver. Rev. 2013, 65, 1215–1233.10.1016/j.addr.2013.05.001Suche in Google Scholar

34. Ma T. Y., Dyer D. L., Said H. M. Biochim. Biophys. Acta 1994, 1189, 81–88.10.1016/0005-2736(94)90283-6Suche in Google Scholar

35. Chae S. Y., Jin C. H., Shin H. J., Youn Y. S., Lee S., Lee K. C. Bioconjugate Chem. 2008, 19, 334–341.10.1021/bc700292vSuche in Google Scholar PubMed

36. Zhang X. W., Qi J. P., Lu Y., He W., Li X. Y., Wu W. Nanomed-Nanotechnol. 2014, 10, 167–176.10.1016/j.nano.2013.07.011Suche in Google Scholar PubMed

37. Balan V., Redinciuc V., Tudorachi N., Verestiuc L. Eur. Polym. J. 2016, 81, 284–294.10.1016/j.eurpolymj.2016.06.014Suche in Google Scholar

38. Badruddoza A. Z. M., Tay A. S. H., Tan P. Y., Hidajat K., Uddin M. S. J. Hazard. Mater. 2011, 185, 1177–1186.10.1016/j.jhazmat.2010.10.029Suche in Google Scholar PubMed

39. Lu B., Huang D., Zheng H., Huang Z. J., Xu P. H., Xu H. X., Yin Y. Y., Liu X., Li D., Zhang X. Q. Carbohydr. Polym. 2013, 98, 36–42.10.1016/j.carbpol.2013.04.071Suche in Google Scholar PubMed

40. Liang J., Li F., Fang Y., Yang W. J., An X. X., Zhao L. Y., Xin Z. H., Cao L., Hu Q. H. Colloids Surf. B 2011, 82, 297–301.10.1016/j.colsurfb.2010.08.045Suche in Google Scholar PubMed

41. Qiu Y. Y., Zhu J., Wang J. T., Gong R. M., Zheng M. M., Huang F. H. J. Nanosci. Nanotechno. 2013, 13, 5935–5941.10.1166/jnn.2013.7537Suche in Google Scholar PubMed

42. Li H. X., Zhang Z., Bao X. Y., Xu G. R., Yao P. Colloids Surf. B 2018, 170, 136–143.10.1016/j.colsurfb.2018.05.063Suche in Google Scholar PubMed

43. Balan V., Petrache I. A., Popa M. I., Butnaru M., Barbu E., Tsibouklis J., Verestiuc L. J. Nanopart. Res. 2012, 14, 1–14.10.1007/s11051-012-0730-ySuche in Google Scholar

44. Balan V., Popa M. I., Verestiuc L., Chiriac A. P., Neamtu I., Nita L. E., Nistor M. T. Compos. Part B-Eng. 2012, 43, 926–932.10.1016/j.compositesb.2011.10.011Suche in Google Scholar

45. Schneider H. J., Hacket F., Rüdiger V. Chem. Rev. 1998, 98, 1755–1785.10.1021/cr970019tSuche in Google Scholar PubMed

46. Du H. L., Yang X. Y., Pang X., Zhai G. X. Carbohydr. Polym. 2014, 111, 753–761.10.1016/j.carbpol.2014.04.095Suche in Google Scholar PubMed

47. Song H. Y., Ma X. L., Xiong F. L., Hong H., Li C. F., Li L. H., Wu S. S., Zhang X. Q., Zhang J., Hu J. H. J. Wuhan Univ. Technol. 2016, 31, 1394–1400.10.1007/s11595-016-1544-zSuche in Google Scholar

48. Song M. M., Li L. P., Zhang Y., Chen K. M., Wang H., Gong R. M. React. Funct. Polym. 2017, 117, 10–15.10.1016/j.reactfunctpolym.2017.05.008Suche in Google Scholar

49. He C., Yin L. C., Tang C., Yin C. H. Biomaterials 2012, 33, 8569–8578.10.1016/j.biomaterials.2012.07.063Suche in Google Scholar PubMed

50. Ahmad N., Alam M. A., Ahmad R., Umar S., Ahmad J. F. J. Microencapsul. 2018, 35, 327–343.10.1080/02652048.2018.1485755Suche in Google Scholar PubMed

51. Ji J. G., Hao S. L., Liu W. Q., Zhang J. F., Wu D. J., Xu Y. Polym. Bull. 2011, 67, 1201–1213.10.1007/s00289-011-0449-4Suche in Google Scholar

Received: 2019-04-23
Accepted: 2020-03-05
Published Online: 2020-04-30
Published in Print: 2020-05-26

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 12.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2019-0137/html
Button zum nach oben scrollen