Ionic gelated β-cyclodextrin-biotin-carboxymethyl chitosan nanoparticles prepared as carrier for oral delivery of protein drugs
-
Kuanmin Chen
und Renmin Gong
Abstract
In this paper, the β-cyclodextrin (β-CD) and biotin (Bi) were successfully grafted onto carboxymethyl chitosan (CMCS). And then the β-CD-Bi-CMCS nanoparticles (NPs) were prepared as oral nano-delivery carrier of protein drugs by ionic gelation method. The morphological feature of fabricated drug carrier was determined by dynamic light scattering and transmission electron microscopy. The result showed that the prepared NPs presented spherical structure with an average diameter of 138 nm. Bovine serum albumin (BSA) was selected as model protein drug that was entrapped in prepared drug carrier with satisfactory entrapment efficiency (79.18%) and loading content (3.96%). The drug release profiles of BSA/β-CD-Bi-CMCS NPs were studied at different pH environment for simulated gastric fluid (SGF), simulated intestinal fluid (SIF) and simulated colonic fluid (SCF). It was found that the BSA/β-CD-Bi-CMCS NPs displayed a pH dependent drug release profiles. After 72 h, the cumulative release amount of BSA in SGF, SIF, and SCF was about 20.57, 74.46, and 91%, respectively. Furthermore, the enzymatic degradation and cytotoxicity studies showed the synthesized β-CD-Bi-CMCS NPs had high chemical stability and biocompatibility. This work indicated that the β-CD-Bi-CMCS NPs had the potentiality as promising nanocarriers for oral delivery of protein drugs.
Funding source: The Innovation Team of Scientific Research Platform in Anhui Universities
Funding source: The Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, Anhui Normal University
Funding source: The Key Laboratory of Bioresource Protection and Utilization of Anhui Province
Funding source: The Key Laboratory of Biotic Environment and Ecological Safety of Anhui Province
Research funding: This work was financially supported by the Innovation Team of Scientific Research Platform in Anhui Universities, the Key Laboratory of Bioresource Protection and Utilization of Anhui Province, the Key Laboratory of Biotic Environment and Ecological Safety of Anhui Province, and the Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, Anhui Normal University.
References
1. Craik D. J., Fairlie D. P., Liras S., Price D. Chem. Biol. Drug Des. 2013, 81, 136–147. https://doi.org/10.1111/cbdd.12055.Suche in Google Scholar
2. Fosgerau K., Hoffmann T. Drug Discov. Today 2015, 20, 122–128.10.1016/j.drudis.2014.10.003Suche in Google Scholar PubMed
3. Mahato R. I., Narang A. S., Thoma L., Miller D. D. Crit. Rev. Ther. Drug Carrier Syst. 2003, 20, 153–214.10.1615/CritRevTherDrugCarrierSyst.v20.i23.30Suche in Google Scholar PubMed
4. Hamman J. H., Enslin G. M., Kotzé A. F. Biodrugs 2005, 19, 165–177.10.2165/00063030-200519030-00003Suche in Google Scholar PubMed
5. Morishita M., Peppas N. A. Drug Discov. Today 2006, 11, 905–910.10.1016/j.drudis.2006.08.005Suche in Google Scholar PubMed
6. Bakhru S. H., Furtado S., Morello A. P., Mathiowitz E. Adv. Drug Deliver. Rev. 2013, 65, 811–821.10.1016/j.addr.2013.04.006Suche in Google Scholar PubMed
7. Li L., Jiang G. H., Yu W. J., Liu D. P., Chen H., Liu Y. K., Huang Q., Tong Z. Z., Yao J. M., Kong X. D. Mater. Sci. Eng. C. 2016, 69, 37–45.10.1016/j.msec.2016.06.059Suche in Google Scholar PubMed
8. Li L., Jiang G. H., Yu W. J., Liu D. P., Chen H., Liu Y. K., Huang Q., Tong Z. Z., Yao J. M., Kong X. D. Mater. Sci. Eng. C. 2017, 70, 278–286.10.1016/j.msec.2016.08.083Suche in Google Scholar PubMed
9. Xu B., Jiang G. H., Yu W. J., Liu D. P., Liu Y. K., Kong X. D., Yao J. M. Mater. Sci. Eng. C. 2017, 78, 420–428.10.1016/j.msec.2017.04.113Suche in Google Scholar PubMed
10. Liu D. P., Jiang G. H., Yu W. J., Li L., Tong Z. Z., Kong X. D., Yao J. M. Mater. Lett. 2017, 188, 263–266.10.1016/j.matlet.2016.10.117Suche in Google Scholar
11. Kumar M. N. V. R. React. Funct. Polym. 2000, 46, 1–27.10.1016/S1381-5148(00)00038-9Suche in Google Scholar
12. Liu K., Chen L. H., Huang L. L., Lai Y. N. Carbohydr. Polym. 2016, 151, 1115–1119.10.1016/j.carbpol.2016.06.071Suche in Google Scholar
13. Abbasian M., Bighlari P., Mahmoodzadeh F., Acar M. H., Jaymand M. J. Appl. Polym. Sci. 2019. https://doi.org/10.1002/app.48037.Suche in Google Scholar
14. Chuan D., Jin T., Fan R. R., Zhou L. X., Guo G. Adv. Colloid Interface Sci. 2019, 268, 25–38.10.1016/j.cis.2019.03.007Suche in Google Scholar
15. Ehterami A., Salehi M., Farzamfar S., Samadian H., Vaez A., Ghorbani S., Ai J., Sahrapeyma H. J. Drug Deliv. Sci. Tec. 2019, 51, 204–213.10.1016/j.jddst.2019.02.032Suche in Google Scholar
16. Ehterami A., Salehi M., Farzamfar S., Vaez A., Samadian H., Sahrapeymae H., Mirzaii M., Ghorbani S., Goodarzi A. Int. J. Biol. Macromol. 2018, 117, 601–609.10.1016/j.ijbiomac.2018.05.184Suche in Google Scholar
17. Prabaharan M., Jayakumar R. Int. J. Biol. Macromol. 2009, 44, 320–325.10.1016/j.ijbiomac.2009.01.005Suche in Google Scholar
18. Abbasian M., Jaymand M., Niroomand P., Farnoudian-Habibi A., Karaj-Abad S. G. Int. J. Biol. Macromol. 2017, 95, 393–403.10.1016/j.ijbiomac.2016.11.075Suche in Google Scholar
19. Charoenchaitrakool M., Dehghani F., Foster N. R. Int. J. Pharmaceut. 2002, 239, 103–112.10.1016/S0378-5173(02)00078-9Suche in Google Scholar
20. Ding H. Y., Chao J. B., Zhang G. M., Shuang S. M., Pan J. H. Spectrochim. Acta A 2003, 59, 3421–3429.10.1016/S1386-1425(03)00176-8Suche in Google Scholar
21. Chen M., Diao G. W., Zhang E. R. Chemosphere 2006, 63, 522–529.10.1016/j.chemosphere.2005.08.033Suche in Google Scholar
22. Karathanos V. T., Mourtzinos I., Yannakopoulou K., Andrikopoulos N. K. Food Chem. 2007, 101, 652–658.10.1016/j.foodchem.2006.01.053Suche in Google Scholar
23. Chen X. L., Chen R., Guo Z. Y., Li C. P., Li P. C. Food Chem. 2007, 101, 1580–1584.10.1016/j.foodchem.2006.04.020Suche in Google Scholar
24. Wang J., Cao Y. P., Sun B. G., Wang C. T. Food Chem. 2011, 127, 1680–1685.10.1016/j.foodchem.2011.02.036Suche in Google Scholar
25. Sambasevam K. P., Mohamad S., Sarih N. M., Ismail N. A. Int. J. Mol. Sci. 2013, 14, 3671–3682.10.3390/ijms14023671Suche in Google Scholar
26. Thacharodi D., Rao K. P. Biomaterials 1995, 16, 145–148.10.1016/0142-9612(95)98278-MSuche in Google Scholar
27. Tozaki H., Komoike J., Tada C., Maruyama T., Terabe A., Suzuki T., Yamamoto A., Muranishi S. J. pharm. Sci. 1997, 86, 1016–1021.10.1021/js970018gSuche in Google Scholar
28. De Campos A. M., Diebold Y., Carvalho E. L. S., Sánchez A., Alonso M. J. Pharm. Res. 2004, 21, 803–810.10.1023/B:PHAM.0000026432.75781.cbSuche in Google Scholar
29. Rawat W., Jain S. K. Eur. J. Pharm. Biopharm. 2004, 57, 263–267.10.1016/j.ejpb.2003.10.020Suche in Google Scholar
30. Wen X. H., Tan F., Jing Z. J., Liu Z. Y. J. Pharmaceuti. Biomed. 2004, 34, 517–523.10.1016/S0731-7085(03)00576-4Suche in Google Scholar
31. Machín R., Isasi J. R., Vélaz I. Carbohydr. Polym. 2012, 87, 2024–2030.10.1016/j.carbpol.2011.10.024Suche in Google Scholar
32. Fàbregas A., Miñarro M., Montoya E. G., Lozano P. P., Carrillo C., Sarrate R., Sánchez N., Ticó J. R., Suñé-Negre J. M. Int. J. Pharm. 2013, 446, 199–204.10.1016/j.ijpharm.2013.02.015Suche in Google Scholar
33. Zhang J. X., Ma P. X. Adv. Drug Deliver. Rev. 2013, 65, 1215–1233.10.1016/j.addr.2013.05.001Suche in Google Scholar
34. Ma T. Y., Dyer D. L., Said H. M. Biochim. Biophys. Acta 1994, 1189, 81–88.10.1016/0005-2736(94)90283-6Suche in Google Scholar
35. Chae S. Y., Jin C. H., Shin H. J., Youn Y. S., Lee S., Lee K. C. Bioconjugate Chem. 2008, 19, 334–341.10.1021/bc700292vSuche in Google Scholar PubMed
36. Zhang X. W., Qi J. P., Lu Y., He W., Li X. Y., Wu W. Nanomed-Nanotechnol. 2014, 10, 167–176.10.1016/j.nano.2013.07.011Suche in Google Scholar PubMed
37. Balan V., Redinciuc V., Tudorachi N., Verestiuc L. Eur. Polym. J. 2016, 81, 284–294.10.1016/j.eurpolymj.2016.06.014Suche in Google Scholar
38. Badruddoza A. Z. M., Tay A. S. H., Tan P. Y., Hidajat K., Uddin M. S. J. Hazard. Mater. 2011, 185, 1177–1186.10.1016/j.jhazmat.2010.10.029Suche in Google Scholar PubMed
39. Lu B., Huang D., Zheng H., Huang Z. J., Xu P. H., Xu H. X., Yin Y. Y., Liu X., Li D., Zhang X. Q. Carbohydr. Polym. 2013, 98, 36–42.10.1016/j.carbpol.2013.04.071Suche in Google Scholar PubMed
40. Liang J., Li F., Fang Y., Yang W. J., An X. X., Zhao L. Y., Xin Z. H., Cao L., Hu Q. H. Colloids Surf. B 2011, 82, 297–301.10.1016/j.colsurfb.2010.08.045Suche in Google Scholar PubMed
41. Qiu Y. Y., Zhu J., Wang J. T., Gong R. M., Zheng M. M., Huang F. H. J. Nanosci. Nanotechno. 2013, 13, 5935–5941.10.1166/jnn.2013.7537Suche in Google Scholar PubMed
42. Li H. X., Zhang Z., Bao X. Y., Xu G. R., Yao P. Colloids Surf. B 2018, 170, 136–143.10.1016/j.colsurfb.2018.05.063Suche in Google Scholar PubMed
43. Balan V., Petrache I. A., Popa M. I., Butnaru M., Barbu E., Tsibouklis J., Verestiuc L. J. Nanopart. Res. 2012, 14, 1–14.10.1007/s11051-012-0730-ySuche in Google Scholar
44. Balan V., Popa M. I., Verestiuc L., Chiriac A. P., Neamtu I., Nita L. E., Nistor M. T. Compos. Part B-Eng. 2012, 43, 926–932.10.1016/j.compositesb.2011.10.011Suche in Google Scholar
45. Schneider H. J., Hacket F., Rüdiger V. Chem. Rev. 1998, 98, 1755–1785.10.1021/cr970019tSuche in Google Scholar PubMed
46. Du H. L., Yang X. Y., Pang X., Zhai G. X. Carbohydr. Polym. 2014, 111, 753–761.10.1016/j.carbpol.2014.04.095Suche in Google Scholar PubMed
47. Song H. Y., Ma X. L., Xiong F. L., Hong H., Li C. F., Li L. H., Wu S. S., Zhang X. Q., Zhang J., Hu J. H. J. Wuhan Univ. Technol. 2016, 31, 1394–1400.10.1007/s11595-016-1544-zSuche in Google Scholar
48. Song M. M., Li L. P., Zhang Y., Chen K. M., Wang H., Gong R. M. React. Funct. Polym. 2017, 117, 10–15.10.1016/j.reactfunctpolym.2017.05.008Suche in Google Scholar
49. He C., Yin L. C., Tang C., Yin C. H. Biomaterials 2012, 33, 8569–8578.10.1016/j.biomaterials.2012.07.063Suche in Google Scholar PubMed
50. Ahmad N., Alam M. A., Ahmad R., Umar S., Ahmad J. F. J. Microencapsul. 2018, 35, 327–343.10.1080/02652048.2018.1485755Suche in Google Scholar PubMed
51. Ji J. G., Hao S. L., Liu W. Q., Zhang J. F., Wu D. J., Xu Y. Polym. Bull. 2011, 67, 1201–1213.10.1007/s00289-011-0449-4Suche in Google Scholar
© 2020 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Material properties
- Structure-properties relationship for energy storage redox polymers: a review
- Effects of chain polarity of hindered phenol on the damping properties of polymer-based hybrid materials: insights into the molecular mechanism
- Effect of interfacial modification on the thermo-mechanical properties of flax reinforced polylactide stereocomplex composites
- Use of diisocyanate to enhance the flame-retardant, mechanical and crystalline properties of poly (butylene succinate-co-butylene 3-hydroxyphenylphosphinyl-propionate) (PBSH)
- Preparation and assembly
- Graphene oxide modified carbon fiber reinforced epoxy composites
- Fabrication and evaluation of polylactic acid/pectin composite scaffold via freeze extraction for tissue engineering
- Engineering and processing
- Study on the interface morphology in the induction welding joint of PEEK plate at low power
- Ionic gelated β-cyclodextrin-biotin-carboxymethyl chitosan nanoparticles prepared as carrier for oral delivery of protein drugs
Artikel in diesem Heft
- Frontmatter
- Material properties
- Structure-properties relationship for energy storage redox polymers: a review
- Effects of chain polarity of hindered phenol on the damping properties of polymer-based hybrid materials: insights into the molecular mechanism
- Effect of interfacial modification on the thermo-mechanical properties of flax reinforced polylactide stereocomplex composites
- Use of diisocyanate to enhance the flame-retardant, mechanical and crystalline properties of poly (butylene succinate-co-butylene 3-hydroxyphenylphosphinyl-propionate) (PBSH)
- Preparation and assembly
- Graphene oxide modified carbon fiber reinforced epoxy composites
- Fabrication and evaluation of polylactic acid/pectin composite scaffold via freeze extraction for tissue engineering
- Engineering and processing
- Study on the interface morphology in the induction welding joint of PEEK plate at low power
- Ionic gelated β-cyclodextrin-biotin-carboxymethyl chitosan nanoparticles prepared as carrier for oral delivery of protein drugs