Ionic gelated β-cyclodextrin-biotin-carboxymethyl chitosan nanoparticles prepared as carrier for oral delivery of protein drugs
-
Kuanmin Chen
, Suoju He , Hui Wang , Song Zhang , Lizhen Yu , Yue Zhang , Ezzat H Elshazly , Lixia Keand Renmin Gong
Abstract
In this paper, the β-cyclodextrin (β-CD) and biotin (Bi) were successfully grafted onto carboxymethyl chitosan (CMCS). And then the β-CD-Bi-CMCS nanoparticles (NPs) were prepared as oral nano-delivery carrier of protein drugs by ionic gelation method. The morphological feature of fabricated drug carrier was determined by dynamic light scattering and transmission electron microscopy. The result showed that the prepared NPs presented spherical structure with an average diameter of 138 nm. Bovine serum albumin (BSA) was selected as model protein drug that was entrapped in prepared drug carrier with satisfactory entrapment efficiency (79.18%) and loading content (3.96%). The drug release profiles of BSA/β-CD-Bi-CMCS NPs were studied at different pH environment for simulated gastric fluid (SGF), simulated intestinal fluid (SIF) and simulated colonic fluid (SCF). It was found that the BSA/β-CD-Bi-CMCS NPs displayed a pH dependent drug release profiles. After 72 h, the cumulative release amount of BSA in SGF, SIF, and SCF was about 20.57, 74.46, and 91%, respectively. Furthermore, the enzymatic degradation and cytotoxicity studies showed the synthesized β-CD-Bi-CMCS NPs had high chemical stability and biocompatibility. This work indicated that the β-CD-Bi-CMCS NPs had the potentiality as promising nanocarriers for oral delivery of protein drugs.
Funding source: The Innovation Team of Scientific Research Platform in Anhui Universities
Funding source: The Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, Anhui Normal University
Funding source: The Key Laboratory of Bioresource Protection and Utilization of Anhui Province
Funding source: The Key Laboratory of Biotic Environment and Ecological Safety of Anhui Province
Research funding: This work was financially supported by the Innovation Team of Scientific Research Platform in Anhui Universities, the Key Laboratory of Bioresource Protection and Utilization of Anhui Province, the Key Laboratory of Biotic Environment and Ecological Safety of Anhui Province, and the Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, Anhui Normal University.
References
1. Craik D. J., Fairlie D. P., Liras S., Price D. Chem. Biol. Drug Des. 2013, 81, 136–147. https://doi.org/10.1111/cbdd.12055.Search in Google Scholar
2. Fosgerau K., Hoffmann T. Drug Discov. Today 2015, 20, 122–128.10.1016/j.drudis.2014.10.003Search in Google Scholar PubMed
3. Mahato R. I., Narang A. S., Thoma L., Miller D. D. Crit. Rev. Ther. Drug Carrier Syst. 2003, 20, 153–214.10.1615/CritRevTherDrugCarrierSyst.v20.i23.30Search in Google Scholar PubMed
4. Hamman J. H., Enslin G. M., Kotzé A. F. Biodrugs 2005, 19, 165–177.10.2165/00063030-200519030-00003Search in Google Scholar PubMed
5. Morishita M., Peppas N. A. Drug Discov. Today 2006, 11, 905–910.10.1016/j.drudis.2006.08.005Search in Google Scholar PubMed
6. Bakhru S. H., Furtado S., Morello A. P., Mathiowitz E. Adv. Drug Deliver. Rev. 2013, 65, 811–821.10.1016/j.addr.2013.04.006Search in Google Scholar PubMed
7. Li L., Jiang G. H., Yu W. J., Liu D. P., Chen H., Liu Y. K., Huang Q., Tong Z. Z., Yao J. M., Kong X. D. Mater. Sci. Eng. C. 2016, 69, 37–45.10.1016/j.msec.2016.06.059Search in Google Scholar PubMed
8. Li L., Jiang G. H., Yu W. J., Liu D. P., Chen H., Liu Y. K., Huang Q., Tong Z. Z., Yao J. M., Kong X. D. Mater. Sci. Eng. C. 2017, 70, 278–286.10.1016/j.msec.2016.08.083Search in Google Scholar PubMed
9. Xu B., Jiang G. H., Yu W. J., Liu D. P., Liu Y. K., Kong X. D., Yao J. M. Mater. Sci. Eng. C. 2017, 78, 420–428.10.1016/j.msec.2017.04.113Search in Google Scholar PubMed
10. Liu D. P., Jiang G. H., Yu W. J., Li L., Tong Z. Z., Kong X. D., Yao J. M. Mater. Lett. 2017, 188, 263–266.10.1016/j.matlet.2016.10.117Search in Google Scholar
11. Kumar M. N. V. R. React. Funct. Polym. 2000, 46, 1–27.10.1016/S1381-5148(00)00038-9Search in Google Scholar
12. Liu K., Chen L. H., Huang L. L., Lai Y. N. Carbohydr. Polym. 2016, 151, 1115–1119.10.1016/j.carbpol.2016.06.071Search in Google Scholar
13. Abbasian M., Bighlari P., Mahmoodzadeh F., Acar M. H., Jaymand M. J. Appl. Polym. Sci. 2019. https://doi.org/10.1002/app.48037.Search in Google Scholar
14. Chuan D., Jin T., Fan R. R., Zhou L. X., Guo G. Adv. Colloid Interface Sci. 2019, 268, 25–38.10.1016/j.cis.2019.03.007Search in Google Scholar
15. Ehterami A., Salehi M., Farzamfar S., Samadian H., Vaez A., Ghorbani S., Ai J., Sahrapeyma H. J. Drug Deliv. Sci. Tec. 2019, 51, 204–213.10.1016/j.jddst.2019.02.032Search in Google Scholar
16. Ehterami A., Salehi M., Farzamfar S., Vaez A., Samadian H., Sahrapeymae H., Mirzaii M., Ghorbani S., Goodarzi A. Int. J. Biol. Macromol. 2018, 117, 601–609.10.1016/j.ijbiomac.2018.05.184Search in Google Scholar
17. Prabaharan M., Jayakumar R. Int. J. Biol. Macromol. 2009, 44, 320–325.10.1016/j.ijbiomac.2009.01.005Search in Google Scholar
18. Abbasian M., Jaymand M., Niroomand P., Farnoudian-Habibi A., Karaj-Abad S. G. Int. J. Biol. Macromol. 2017, 95, 393–403.10.1016/j.ijbiomac.2016.11.075Search in Google Scholar
19. Charoenchaitrakool M., Dehghani F., Foster N. R. Int. J. Pharmaceut. 2002, 239, 103–112.10.1016/S0378-5173(02)00078-9Search in Google Scholar
20. Ding H. Y., Chao J. B., Zhang G. M., Shuang S. M., Pan J. H. Spectrochim. Acta A 2003, 59, 3421–3429.10.1016/S1386-1425(03)00176-8Search in Google Scholar
21. Chen M., Diao G. W., Zhang E. R. Chemosphere 2006, 63, 522–529.10.1016/j.chemosphere.2005.08.033Search in Google Scholar
22. Karathanos V. T., Mourtzinos I., Yannakopoulou K., Andrikopoulos N. K. Food Chem. 2007, 101, 652–658.10.1016/j.foodchem.2006.01.053Search in Google Scholar
23. Chen X. L., Chen R., Guo Z. Y., Li C. P., Li P. C. Food Chem. 2007, 101, 1580–1584.10.1016/j.foodchem.2006.04.020Search in Google Scholar
24. Wang J., Cao Y. P., Sun B. G., Wang C. T. Food Chem. 2011, 127, 1680–1685.10.1016/j.foodchem.2011.02.036Search in Google Scholar
25. Sambasevam K. P., Mohamad S., Sarih N. M., Ismail N. A. Int. J. Mol. Sci. 2013, 14, 3671–3682.10.3390/ijms14023671Search in Google Scholar
26. Thacharodi D., Rao K. P. Biomaterials 1995, 16, 145–148.10.1016/0142-9612(95)98278-MSearch in Google Scholar
27. Tozaki H., Komoike J., Tada C., Maruyama T., Terabe A., Suzuki T., Yamamoto A., Muranishi S. J. pharm. Sci. 1997, 86, 1016–1021.10.1021/js970018gSearch in Google Scholar
28. De Campos A. M., Diebold Y., Carvalho E. L. S., Sánchez A., Alonso M. J. Pharm. Res. 2004, 21, 803–810.10.1023/B:PHAM.0000026432.75781.cbSearch in Google Scholar
29. Rawat W., Jain S. K. Eur. J. Pharm. Biopharm. 2004, 57, 263–267.10.1016/j.ejpb.2003.10.020Search in Google Scholar
30. Wen X. H., Tan F., Jing Z. J., Liu Z. Y. J. Pharmaceuti. Biomed. 2004, 34, 517–523.10.1016/S0731-7085(03)00576-4Search in Google Scholar
31. Machín R., Isasi J. R., Vélaz I. Carbohydr. Polym. 2012, 87, 2024–2030.10.1016/j.carbpol.2011.10.024Search in Google Scholar
32. Fàbregas A., Miñarro M., Montoya E. G., Lozano P. P., Carrillo C., Sarrate R., Sánchez N., Ticó J. R., Suñé-Negre J. M. Int. J. Pharm. 2013, 446, 199–204.10.1016/j.ijpharm.2013.02.015Search in Google Scholar
33. Zhang J. X., Ma P. X. Adv. Drug Deliver. Rev. 2013, 65, 1215–1233.10.1016/j.addr.2013.05.001Search in Google Scholar
34. Ma T. Y., Dyer D. L., Said H. M. Biochim. Biophys. Acta 1994, 1189, 81–88.10.1016/0005-2736(94)90283-6Search in Google Scholar
35. Chae S. Y., Jin C. H., Shin H. J., Youn Y. S., Lee S., Lee K. C. Bioconjugate Chem. 2008, 19, 334–341.10.1021/bc700292vSearch in Google Scholar PubMed
36. Zhang X. W., Qi J. P., Lu Y., He W., Li X. Y., Wu W. Nanomed-Nanotechnol. 2014, 10, 167–176.10.1016/j.nano.2013.07.011Search in Google Scholar PubMed
37. Balan V., Redinciuc V., Tudorachi N., Verestiuc L. Eur. Polym. J. 2016, 81, 284–294.10.1016/j.eurpolymj.2016.06.014Search in Google Scholar
38. Badruddoza A. Z. M., Tay A. S. H., Tan P. Y., Hidajat K., Uddin M. S. J. Hazard. Mater. 2011, 185, 1177–1186.10.1016/j.jhazmat.2010.10.029Search in Google Scholar PubMed
39. Lu B., Huang D., Zheng H., Huang Z. J., Xu P. H., Xu H. X., Yin Y. Y., Liu X., Li D., Zhang X. Q. Carbohydr. Polym. 2013, 98, 36–42.10.1016/j.carbpol.2013.04.071Search in Google Scholar PubMed
40. Liang J., Li F., Fang Y., Yang W. J., An X. X., Zhao L. Y., Xin Z. H., Cao L., Hu Q. H. Colloids Surf. B 2011, 82, 297–301.10.1016/j.colsurfb.2010.08.045Search in Google Scholar PubMed
41. Qiu Y. Y., Zhu J., Wang J. T., Gong R. M., Zheng M. M., Huang F. H. J. Nanosci. Nanotechno. 2013, 13, 5935–5941.10.1166/jnn.2013.7537Search in Google Scholar PubMed
42. Li H. X., Zhang Z., Bao X. Y., Xu G. R., Yao P. Colloids Surf. B 2018, 170, 136–143.10.1016/j.colsurfb.2018.05.063Search in Google Scholar PubMed
43. Balan V., Petrache I. A., Popa M. I., Butnaru M., Barbu E., Tsibouklis J., Verestiuc L. J. Nanopart. Res. 2012, 14, 1–14.10.1007/s11051-012-0730-ySearch in Google Scholar
44. Balan V., Popa M. I., Verestiuc L., Chiriac A. P., Neamtu I., Nita L. E., Nistor M. T. Compos. Part B-Eng. 2012, 43, 926–932.10.1016/j.compositesb.2011.10.011Search in Google Scholar
45. Schneider H. J., Hacket F., Rüdiger V. Chem. Rev. 1998, 98, 1755–1785.10.1021/cr970019tSearch in Google Scholar PubMed
46. Du H. L., Yang X. Y., Pang X., Zhai G. X. Carbohydr. Polym. 2014, 111, 753–761.10.1016/j.carbpol.2014.04.095Search in Google Scholar PubMed
47. Song H. Y., Ma X. L., Xiong F. L., Hong H., Li C. F., Li L. H., Wu S. S., Zhang X. Q., Zhang J., Hu J. H. J. Wuhan Univ. Technol. 2016, 31, 1394–1400.10.1007/s11595-016-1544-zSearch in Google Scholar
48. Song M. M., Li L. P., Zhang Y., Chen K. M., Wang H., Gong R. M. React. Funct. Polym. 2017, 117, 10–15.10.1016/j.reactfunctpolym.2017.05.008Search in Google Scholar
49. He C., Yin L. C., Tang C., Yin C. H. Biomaterials 2012, 33, 8569–8578.10.1016/j.biomaterials.2012.07.063Search in Google Scholar PubMed
50. Ahmad N., Alam M. A., Ahmad R., Umar S., Ahmad J. F. J. Microencapsul. 2018, 35, 327–343.10.1080/02652048.2018.1485755Search in Google Scholar PubMed
51. Ji J. G., Hao S. L., Liu W. Q., Zhang J. F., Wu D. J., Xu Y. Polym. Bull. 2011, 67, 1201–1213.10.1007/s00289-011-0449-4Search in Google Scholar
© 2020 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Material properties
- Structure-properties relationship for energy storage redox polymers: a review
- Effects of chain polarity of hindered phenol on the damping properties of polymer-based hybrid materials: insights into the molecular mechanism
- Effect of interfacial modification on the thermo-mechanical properties of flax reinforced polylactide stereocomplex composites
- Use of diisocyanate to enhance the flame-retardant, mechanical and crystalline properties of poly (butylene succinate-co-butylene 3-hydroxyphenylphosphinyl-propionate) (PBSH)
- Preparation and assembly
- Graphene oxide modified carbon fiber reinforced epoxy composites
- Fabrication and evaluation of polylactic acid/pectin composite scaffold via freeze extraction for tissue engineering
- Engineering and processing
- Study on the interface morphology in the induction welding joint of PEEK plate at low power
- Ionic gelated β-cyclodextrin-biotin-carboxymethyl chitosan nanoparticles prepared as carrier for oral delivery of protein drugs
Articles in the same Issue
- Frontmatter
- Material properties
- Structure-properties relationship for energy storage redox polymers: a review
- Effects of chain polarity of hindered phenol on the damping properties of polymer-based hybrid materials: insights into the molecular mechanism
- Effect of interfacial modification on the thermo-mechanical properties of flax reinforced polylactide stereocomplex composites
- Use of diisocyanate to enhance the flame-retardant, mechanical and crystalline properties of poly (butylene succinate-co-butylene 3-hydroxyphenylphosphinyl-propionate) (PBSH)
- Preparation and assembly
- Graphene oxide modified carbon fiber reinforced epoxy composites
- Fabrication and evaluation of polylactic acid/pectin composite scaffold via freeze extraction for tissue engineering
- Engineering and processing
- Study on the interface morphology in the induction welding joint of PEEK plate at low power
- Ionic gelated β-cyclodextrin-biotin-carboxymethyl chitosan nanoparticles prepared as carrier for oral delivery of protein drugs