Effects of chain polarity of hindered phenol on the damping properties of polymer-based hybrid materials: insights into the molecular mechanism
Abstract
For hindered phenol (HP)/polymer-based hybrid damping materials, the damping properties are greatly affected by the structure variation of HPs. However, the unclear relationship between them limits the exploitation of such promising materials. Therefore, three HPs with different chain polarity were synthesized to explore the relationship in this paper. The structures of the HPs were firstly confirmed by Nuclear Magnetic Resonance Spectrum, Fourier Transform Infrared Spectroscopy (FT-IR) and X-ray Diffraction (XRD). For further prepared HP/polyurethane hybrids, FT-IR and XRD were also adopted to confirm the hydrogen bonding interactions and micromorphologies. And, Molecular dynamics simulation was further used to characterize the effects of polarity variation on the hydrogen bonding interactions and chain packing of the hybrids in a quantitative manner. Then, combined with dynamic mechanical analysis, the relationship between the chain polarity variation of the hindered phenols and the damping properties was established.
Funding source: National Natural Science Foundation of China
Award Identifier / Grant number: 51703016
Funding source: Scientific Research Foundation of Chongqing University of Arts and Sciences
Award Identifier / Grant number: R2015CH08
Award Identifier / Grant number: R2015CH11
Research funding: Support from the National Natural Science Foundation of China (51703016) and the Scientific Research Foundation of Chongqing University of Arts and Sciences (R2015CH08, R2015CH11) is gratefully acknowledged.
References
1. Lakes R. S., Lee T., Bersie A., Wang Y. Nature. 2001, 410, 565. https://doi.org/10.1038/35069035.10.1038/35069035Suche in Google Scholar PubMed
2. Adams J. D., Erickson B. W., Grossenbacher J., Brugger J., Nievergelt A., Fantner G. E. Nat. Nanotechnol. 2016, 11, 147. https://doi.org/10.1038/NNANO.2015.254.10.1038/nnano.2015.254Suche in Google Scholar PubMed
3. Eichler A., Moser J., Chaste J., Zdrojek M., Wilson-Rae I., Bachtold A. Nat. Nanotechnol. 2011, 6, 339. https://doi.org/10.1038/nnano.2011.71.10.1038/nnano.2011.71Suche in Google Scholar PubMed
4. Wu C. F., Yamagishi T. A., Nakamoto Y., Ishida S., Nitta K. H., Kubota S. J. Polym. Sci. Pol. Phys. 2000, 38, 2285. https://doi.org/10.1002/1099-0488(20000901)38:17<2285::AID-POLB90=3.0.CO;2-X.10.1002/1099-0488(20000901)38:17<2285::AID-POLB90>3.0.CO;2-XSuche in Google Scholar
5. Wu C. F., Yamagishi T. A., Nakamoto Y., Ishida S., Kubota S., Nitta K. H. J. Polym. Sci. Pol. Phys. 2000, 38, 1496. https://doi.org/10.1002/(SICI)1099-0488(20000601)38:11<1496::AID-POLB90>3.3.CO;2-O.10.1002/(SICI)1099-0488(20000601)38:11<1496::AID-POLB90>3.0.CO;2-XSuche in Google Scholar
6. Wu C. F., Yamagishi T. A., Nakamoto Y., Ishida S., Nitta K. H. J. Polym. Sci. Pol. Phys. 2000, 38, 2943. https://doi.org/10.1002/1099-0488(20001115)38:22<2943::AID-POLB100>3.0.CO;2-K.10.1002/1099-0488(20001115)38:22<2943::AID-POLB100>3.0.CO;2-KSuche in Google Scholar
7. Wu C. F. J. Polym. Sci. Pol. Phys. 2001, 39, 23. https://doi.org/10.1002/1099-0488(20010101)39:1<23::AID-POLB30>3.0.CO;2-I.10.1002/1099-0488(20010101)39:1<23::AID-POLB30>3.0.CO;2-ISuche in Google Scholar
8. Zhao X. Y., Xiang P., Tian M., Fong H., Jin R., Zhang L. Q. Polymer. 2007, 48, 6056. https://doi.org/10.1016/j.polymer.2007.08.011.10.1016/j.polymer.2007.08.011Suche in Google Scholar
9. Zhou X., Zhang G., Zhang W., Guo W., Wang J. Polym. J. 2012, 44, 382. https://doi.org/10.1038/pj.2012.6.10.1038/pj.2012.6Suche in Google Scholar
10. Yin X., Liu C., Lin Y., Guan A., Wu G. J. Appl. Polym. Sci. 2015, 132, 41594. https://doi.org/10.1002/app.41954.10.1002/app.41954Suche in Google Scholar
11. Steiner T. Angew. Chem., Int. Ed. 2002, 41, 48. https://doi.org/10.1002/1521-3773(20020104)41:1<48::AID-ANIE48>3.0.CO;2-U.10.1002/1521-3773(20020104)41:1<48::AID-ANIE48>3.0.CO;2-USuche in Google Scholar
12. Song M., Zhao X. Y., Li Y., Chan T. W., Zhang L. Q., Wu S. Z. RSC Adv. 2014, 4, 48472. https://doi.org/10.1039/c4ra10211h.10.1039/C4RA10211HSuche in Google Scholar
13. Song M., Zhao X. Y., Li Y., Hu S. K., Zhang L. Q., Wu S. Z. RSC Adv. 2014, 4, 6719. https://doi.org/10.1039/c3ra46275g.10.1039/c3ra46275gSuche in Google Scholar
14. Xu K. M., Zhang F. S., Zhang X. L., Hu Q. M., Wu H., Guo S. Y. J. Mater. Chem. A 2014, 2, 8545. https://doi.org/10.1039/c4ta00476k.10.1039/C4TA00476KSuche in Google Scholar
15. Xu K. M., Zhang F. S., Zhang X. L., Guo J. W., Wu H., Guo S. Y. RSC Adv. 2015, 5, 4200. https://doi.org/10.1039/c4ra06644h.10.1039/C4RA06644HSuche in Google Scholar
16. Qiao B., Zhao X. Y., Yue D. M., Zhang L. Q., Wu S. Z. J. Mater. Chem. 2012, 22, 12339. https://doi.org/10.1039/c2jm31716h.10.1039/c2jm31716hSuche in Google Scholar
17. Zhao X. Y., Cao Y. J., Zou H., Li J., Zhang L. Q. J. Appl. Polym. Sci. 2012, 123, 3696. https://doi.org/10.1002/app.35043.10.1002/app.35043Suche in Google Scholar
18. Zhao X. Y., Zhang G., Lu F., Zhang L. Q., Wu S. Z. RSC Adv. 2016, 6, 85994. https://doi.org/10.1039/c6ra17283k.10.1039/C6RA17283KSuche in Google Scholar
19. Yang D. W., Zhao X. Y., Chan T., Zhang L. Q., Wu S. Z. J. Mater. Sci. 2016, 51, 5760. https://doi.org/10.1007/s10853-016-9878-7.10.1007/s10853-016-9878-7Suche in Google Scholar
20. Xiao D. L., Zhao X. Y., Feng Y. P., Xiang P., Zhang L. Q., Wang W. M. J. Appl. Polym. Sci. 2010, 116, 2143. https://doi.org/10.1002/app.31828.10.1002/pola.23982Suche in Google Scholar
21. Zhao X. Y., Lu Y. L., Xiao D. L., Wu S. Z., Zhang L. Q. Macromol. Mater. Eng. 2009, 294, 345. https://doi.org/10.1002/mame.200800375.10.1002/mame.200800375Suche in Google Scholar
22. Wu C. F., Kuriyama T., Inoue T. J. Mater. Sci. 2004, 39, 1249. https://doi.org/10.1023/B:JMSC.0000013882.37125.a2.10.1023/B:JMSC.0000013882.37125.a2Suche in Google Scholar
23. Lin T. F., Tang Z. H., Guo B. C. ACS Appl. Mater. Inter. 2014, 6, 21060. https://doi.org/10.1021/am500236w.10.1021/am505937pSuche in Google Scholar PubMed
24. Wu C. F., Saburo A. J. Polym. Sci. Pol. Phys. 2004, 42, 209. https://doi.org/10.1002/polb.10540.10.1002/polb.10540Suche in Google Scholar
25. Wu C. F. Polymer. 2003, 44, 1697. https://doi.org/10.1016/S0032-3861(02)00918-7.10.1016/S0032-3861(02)00918-7Suche in Google Scholar
26. Wu C. F., Mori K., Otani Y., Namiki N., Emi H. Polymer. 2001, 42, 8289. https://doi.org/10.1016/S0032-3861(01)00203-8.10.1016/S0032-3861(01)00203-8Suche in Google Scholar
27. Li C., Xu S. A., Xiao F. Y., Wu C. F. Eur. Polym. J. 2006, 42, 2507. https://doi.org/10.1016/j.eurpolymj.2006.06.004.10.1016/j.eurpolymj.2006.06.004Suche in Google Scholar
28. Zhang G., Li H. X., Antenseniner M., Chung T. C. Macromolecules. 2015, 48, 2925. https://doi.org/10.1021/acs.macromol.5b00439.10.1021/acs.macromol.5b00439Suche in Google Scholar
29. Kim T. H., Oh D. R. Polym. Degrad. Stabil. 2004, 84, 499. https://doi.org/10.1016/j.polymdegradstab.2004.01.008.10.1016/j.polymdegradstab.2004.01.008Suche in Google Scholar
30. Shi X. M., Wang J. D., Jiang B. B., Yang Y. R. Polymer. 2013, 54, 1167. https://doi.org/10.1016/j.polymer.2012.12.062.10.1016/j.polymer.2012.12.062Suche in Google Scholar
31. Bergenudd H., Eriksson P., DeArmitt C., Stenberg B., Jonsson E. M. Polym. Degrad. Stabil. 2002, 76, 503. https://doi.org/10.1016/S0141-3910(02)00071-X.10.1016/S0141-3910(02)00071-XSuche in Google Scholar
32. Yang Y., Zhao Y. F., Zhan M. S., Wang J. Y., Zhao C., Liu X. Y., Zhang J. H. J. Appl. Polym. Sci. 2015, 132, 42605. https://doi.org/10.1002/app.42605.10.1002/app.42605Suche in Google Scholar
33. Zhu J., Zhao X. Y., Liu L., Yang R. N., Song M., Wu S. Z. Polymer. 2018, 155, 152. https://doi.org/10.1016/j.polymer.2018.09.040.10.1016/j.polymer.2018.09.040Suche in Google Scholar
34. Shi G. P., Yin X. T., Wu G. Z. Polymer. 2018, 153, 317. https://doi.org/10.1016/j.polymer.2018.08.037.10.1016/j.polymer.2018.08.037Suche in Google Scholar
35. Inada Y., Orita H. J. Comput. Chem. 2008, 29, 225. https://doi.org/10.1002/jcc.20782.10.1002/jcc.20782Suche in Google Scholar PubMed
36. Sun H. J. Phys. Chem. B. 1998, 102, 7338. https://doi.org/10.1021/jp980939v.10.1021/jp980939vSuche in Google Scholar
37. Habasaki J., Ueda A. J. Non-Cryst. Solids. 2016, 447, 212. https://doi.org/10.1016/j.jnoncrysol.2016.06.015.10.1016/j.jnoncrysol.2016.06.015Suche in Google Scholar
38. Bian C., Wang S., Liu Y., Su K., Jing X. Ind. Eng. Chem. Res. 2016, 55, 9440. https://doi.org/10.1021/acs.iecr.6b02136.10.1021/acs.iecr.6b02136Suche in Google Scholar
39. Xu K. M., Hu Q. M., Wang J. H., Zhou H. D., Chen J. L. Polymers. 2019, 11, 884. https://doi.org/10.3390/polym11050884.10.3390/polym11050884Suche in Google Scholar PubMed PubMed Central
40. Mohammad S., Alkorta I. J. Phys. Chem. A. 2006, 110, 10817.https://doi.org/10.1021/jp062620d.10.1021/jp062620dSuche in Google Scholar PubMed
41. Wu CF. Polymer. 2010, 51, 4452. https://doi.org/10.1016/j.polymer.2010.07.019.10.1016/j.polymer.2010.07.019Suche in Google Scholar
Supplementary material
The online version of this article offers supplementary material https://doi.org/10.1515/polyeng-2019-0293.
© 2020 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Material properties
- Structure-properties relationship for energy storage redox polymers: a review
- Effects of chain polarity of hindered phenol on the damping properties of polymer-based hybrid materials: insights into the molecular mechanism
- Effect of interfacial modification on the thermo-mechanical properties of flax reinforced polylactide stereocomplex composites
- Use of diisocyanate to enhance the flame-retardant, mechanical and crystalline properties of poly (butylene succinate-co-butylene 3-hydroxyphenylphosphinyl-propionate) (PBSH)
- Preparation and assembly
- Graphene oxide modified carbon fiber reinforced epoxy composites
- Fabrication and evaluation of polylactic acid/pectin composite scaffold via freeze extraction for tissue engineering
- Engineering and processing
- Study on the interface morphology in the induction welding joint of PEEK plate at low power
- Ionic gelated β-cyclodextrin-biotin-carboxymethyl chitosan nanoparticles prepared as carrier for oral delivery of protein drugs
Artikel in diesem Heft
- Frontmatter
- Material properties
- Structure-properties relationship for energy storage redox polymers: a review
- Effects of chain polarity of hindered phenol on the damping properties of polymer-based hybrid materials: insights into the molecular mechanism
- Effect of interfacial modification on the thermo-mechanical properties of flax reinforced polylactide stereocomplex composites
- Use of diisocyanate to enhance the flame-retardant, mechanical and crystalline properties of poly (butylene succinate-co-butylene 3-hydroxyphenylphosphinyl-propionate) (PBSH)
- Preparation and assembly
- Graphene oxide modified carbon fiber reinforced epoxy composites
- Fabrication and evaluation of polylactic acid/pectin composite scaffold via freeze extraction for tissue engineering
- Engineering and processing
- Study on the interface morphology in the induction welding joint of PEEK plate at low power
- Ionic gelated β-cyclodextrin-biotin-carboxymethyl chitosan nanoparticles prepared as carrier for oral delivery of protein drugs