Startseite Effects of chain polarity of hindered phenol on the damping properties of polymer-based hybrid materials: insights into the molecular mechanism
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Effects of chain polarity of hindered phenol on the damping properties of polymer-based hybrid materials: insights into the molecular mechanism

  • Qiaoman Hu , Junhui Wang , Kangming Xu EMAIL logo , Hongdi Zhou , Yue Huang und Jinlei Chen
Veröffentlicht/Copyright: 8. Mai 2020
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

For hindered phenol (HP)/polymer-based hybrid damping materials, the damping properties are greatly affected by the structure variation of HPs. However, the unclear relationship between them limits the exploitation of such promising materials. Therefore, three HPs with different chain polarity were synthesized to explore the relationship in this paper. The structures of the HPs were firstly confirmed by Nuclear Magnetic Resonance Spectrum, Fourier Transform Infrared Spectroscopy (FT-IR) and X-ray Diffraction (XRD). For further prepared HP/polyurethane hybrids, FT-IR and XRD were also adopted to confirm the hydrogen bonding interactions and micromorphologies. And, Molecular dynamics simulation was further used to characterize the effects of polarity variation on the hydrogen bonding interactions and chain packing of the hybrids in a quantitative manner. Then, combined with dynamic mechanical analysis, the relationship between the chain polarity variation of the hindered phenols and the damping properties was established.


Corresponding author: Kangming Xu, College of Materials Science and Engineering, Chongqing University of Arts and Sciences, Yongchuan, Chongqing402160, PR China, E-mail:

Award Identifier / Grant number: 51703016

Funding source: Scientific Research Foundation of Chongqing University of Arts and Sciences

Award Identifier / Grant number: R2015CH08

Award Identifier / Grant number: R2015CH11

  1. Research funding: Support from the National Natural Science Foundation of China (51703016) and the Scientific Research Foundation of Chongqing University of Arts and Sciences (R2015CH08, R2015CH11) is gratefully acknowledged.

References

1. Lakes R. S., Lee T., Bersie A., Wang Y. Nature. 2001, 410, 565. https://doi.org/10.1038/35069035.10.1038/35069035Suche in Google Scholar PubMed

2. Adams J. D., Erickson B. W., Grossenbacher J., Brugger J., Nievergelt A., Fantner G. E. Nat. Nanotechnol. 2016, 11, 147. https://doi.org/10.1038/NNANO.2015.254.10.1038/nnano.2015.254Suche in Google Scholar PubMed

3. Eichler A., Moser J., Chaste J., Zdrojek M., Wilson-Rae I., Bachtold A. Nat. Nanotechnol. 2011, 6, 339. https://doi.org/10.1038/nnano.2011.71.10.1038/nnano.2011.71Suche in Google Scholar PubMed

4. Wu C. F., Yamagishi T. A., Nakamoto Y., Ishida S., Nitta K. H., Kubota S. J. Polym. Sci. Pol. Phys. 2000, 38, 2285. https://doi.org/10.1002/1099-0488(20000901)38:17<2285::AID-POLB90=3.0.CO;2-X.10.1002/1099-0488(20000901)38:17<2285::AID-POLB90>3.0.CO;2-XSuche in Google Scholar

5. Wu C. F., Yamagishi T. A., Nakamoto Y., Ishida S., Kubota S., Nitta K. H. J. Polym. Sci. Pol. Phys. 2000, 38, 1496. https://doi.org/10.1002/(SICI)1099-0488(20000601)38:11<1496::AID-POLB90>3.3.CO;2-O.10.1002/(SICI)1099-0488(20000601)38:11<1496::AID-POLB90>3.0.CO;2-XSuche in Google Scholar

6. Wu C. F., Yamagishi T. A., Nakamoto Y., Ishida S., Nitta K. H. J. Polym. Sci. Pol. Phys. 2000, 38, 2943. https://doi.org/10.1002/1099-0488(20001115)38:22<2943::AID-POLB100>3.0.CO;2-K.10.1002/1099-0488(20001115)38:22<2943::AID-POLB100>3.0.CO;2-KSuche in Google Scholar

7. Wu C. F. J. Polym. Sci. Pol. Phys. 2001, 39, 23. https://doi.org/10.1002/1099-0488(20010101)39:1<23::AID-POLB30>3.0.CO;2-I.10.1002/1099-0488(20010101)39:1<23::AID-POLB30>3.0.CO;2-ISuche in Google Scholar

8. Zhao X. Y., Xiang P., Tian M., Fong H., Jin R., Zhang L. Q. Polymer. 2007, 48, 6056. https://doi.org/10.1016/j.polymer.2007.08.011.10.1016/j.polymer.2007.08.011Suche in Google Scholar

9. Zhou X., Zhang G., Zhang W., Guo W., Wang J. Polym. J. 2012, 44, 382. https://doi.org/10.1038/pj.2012.6.10.1038/pj.2012.6Suche in Google Scholar

10. Yin X., Liu C., Lin Y., Guan A., Wu G. J. Appl. Polym. Sci. 2015, 132, 41594. https://doi.org/10.1002/app.41954.10.1002/app.41954Suche in Google Scholar

11. Steiner T. Angew. Chem., Int. Ed. 2002, 41, 48. https://doi.org/10.1002/1521-3773(20020104)41:1<48::AID-ANIE48>3.0.CO;2-U.10.1002/1521-3773(20020104)41:1<48::AID-ANIE48>3.0.CO;2-USuche in Google Scholar

12. Song M., Zhao X. Y., Li Y., Chan T. W., Zhang L. Q., Wu S. Z. RSC Adv. 2014, 4, 48472. https://doi.org/10.1039/c4ra10211h.10.1039/C4RA10211HSuche in Google Scholar

13. Song M., Zhao X. Y., Li Y., Hu S. K., Zhang L. Q., Wu S. Z. RSC Adv. 2014, 4, 6719. https://doi.org/10.1039/c3ra46275g.10.1039/c3ra46275gSuche in Google Scholar

14. Xu K. M., Zhang F. S., Zhang X. L., Hu Q. M., Wu H., Guo S. Y. J. Mater. Chem. A 2014, 2, 8545. https://doi.org/10.1039/c4ta00476k.10.1039/C4TA00476KSuche in Google Scholar

15. Xu K. M., Zhang F. S., Zhang X. L., Guo J. W., Wu H., Guo S. Y. RSC Adv. 2015, 5, 4200. https://doi.org/10.1039/c4ra06644h.10.1039/C4RA06644HSuche in Google Scholar

16. Qiao B., Zhao X. Y., Yue D. M., Zhang L. Q., Wu S. Z. J. Mater. Chem. 2012, 22, 12339. https://doi.org/10.1039/c2jm31716h.10.1039/c2jm31716hSuche in Google Scholar

17. Zhao X. Y., Cao Y. J., Zou H., Li J., Zhang L. Q. J. Appl. Polym. Sci. 2012, 123, 3696. https://doi.org/10.1002/app.35043.10.1002/app.35043Suche in Google Scholar

18. Zhao X. Y., Zhang G., Lu F., Zhang L. Q., Wu S. Z. RSC Adv. 2016, 6, 85994. https://doi.org/10.1039/c6ra17283k.10.1039/C6RA17283KSuche in Google Scholar

19. Yang D. W., Zhao X. Y., Chan T., Zhang L. Q., Wu S. Z. J. Mater. Sci. 2016, 51, 5760. https://doi.org/10.1007/s10853-016-9878-7.10.1007/s10853-016-9878-7Suche in Google Scholar

20. Xiao D. L., Zhao X. Y., Feng Y. P., Xiang P., Zhang L. Q., Wang W. M. J. Appl. Polym. Sci. 2010, 116, 2143. https://doi.org/10.1002/app.31828.10.1002/pola.23982Suche in Google Scholar

21. Zhao X. Y., Lu Y. L., Xiao D. L., Wu S. Z., Zhang L. Q. Macromol. Mater. Eng. 2009, 294, 345. https://doi.org/10.1002/mame.200800375.10.1002/mame.200800375Suche in Google Scholar

22. Wu C. F., Kuriyama T., Inoue T. J. Mater. Sci. 2004, 39, 1249. https://doi.org/10.1023/B:JMSC.0000013882.37125.a2.10.1023/B:JMSC.0000013882.37125.a2Suche in Google Scholar

23. Lin T. F., Tang Z. H., Guo B. C. ACS Appl. Mater. Inter. 2014, 6, 21060. https://doi.org/10.1021/am500236w.10.1021/am505937pSuche in Google Scholar PubMed

24. Wu C. F., Saburo A. J. Polym. Sci. Pol. Phys. 2004, 42, 209. https://doi.org/10.1002/polb.10540.10.1002/polb.10540Suche in Google Scholar

25. Wu C. F. Polymer. 2003, 44, 1697. https://doi.org/10.1016/S0032-3861(02)00918-7.10.1016/S0032-3861(02)00918-7Suche in Google Scholar

26. Wu C. F., Mori K., Otani Y., Namiki N., Emi H. Polymer. 2001, 42, 8289. https://doi.org/10.1016/S0032-3861(01)00203-8.10.1016/S0032-3861(01)00203-8Suche in Google Scholar

27. Li C., Xu S. A., Xiao F. Y., Wu C. F. Eur. Polym. J. 2006, 42, 2507. https://doi.org/10.1016/j.eurpolymj.2006.06.004.10.1016/j.eurpolymj.2006.06.004Suche in Google Scholar

28. Zhang G., Li H. X., Antenseniner M., Chung T. C. Macromolecules. 2015, 48, 2925. https://doi.org/10.1021/acs.macromol.5b00439.10.1021/acs.macromol.5b00439Suche in Google Scholar

29. Kim T. H., Oh D. R. Polym. Degrad. Stabil. 2004, 84, 499. https://doi.org/10.1016/j.polymdegradstab.2004.01.008.10.1016/j.polymdegradstab.2004.01.008Suche in Google Scholar

30. Shi X. M., Wang J. D., Jiang B. B., Yang Y. R. Polymer. 2013, 54, 1167. https://doi.org/10.1016/j.polymer.2012.12.062.10.1016/j.polymer.2012.12.062Suche in Google Scholar

31. Bergenudd H., Eriksson P., DeArmitt C., Stenberg B., Jonsson E. M. Polym. Degrad. Stabil. 2002, 76, 503. https://doi.org/10.1016/S0141-3910(02)00071-X.10.1016/S0141-3910(02)00071-XSuche in Google Scholar

32. Yang Y., Zhao Y. F., Zhan M. S., Wang J. Y., Zhao C., Liu X. Y., Zhang J. H. J. Appl. Polym. Sci. 2015, 132, 42605. https://doi.org/10.1002/app.42605.10.1002/app.42605Suche in Google Scholar

33. Zhu J., Zhao X. Y., Liu L., Yang R. N., Song M., Wu S. Z. Polymer. 2018, 155, 152. https://doi.org/10.1016/j.polymer.2018.09.040.10.1016/j.polymer.2018.09.040Suche in Google Scholar

34. Shi G. P., Yin X. T., Wu G. Z. Polymer. 2018, 153, 317. https://doi.org/10.1016/j.polymer.2018.08.037.10.1016/j.polymer.2018.08.037Suche in Google Scholar

35. Inada Y., Orita H. J. Comput. Chem. 2008, 29, 225. https://doi.org/10.1002/jcc.20782.10.1002/jcc.20782Suche in Google Scholar PubMed

36. Sun H. J. Phys. Chem. B. 1998, 102, 7338. https://doi.org/10.1021/jp980939v.10.1021/jp980939vSuche in Google Scholar

37. Habasaki J., Ueda A. J. Non-Cryst. Solids. 2016, 447, 212. https://doi.org/10.1016/j.jnoncrysol.2016.06.015.10.1016/j.jnoncrysol.2016.06.015Suche in Google Scholar

38. Bian C., Wang S., Liu Y., Su K., Jing X. Ind. Eng. Chem. Res. 2016, 55, 9440. https://doi.org/10.1021/acs.iecr.6b02136.10.1021/acs.iecr.6b02136Suche in Google Scholar

39. Xu K. M., Hu Q. M., Wang J. H., Zhou H. D., Chen J. L. Polymers. 2019, 11, 884. https://doi.org/10.3390/polym11050884.10.3390/polym11050884Suche in Google Scholar PubMed PubMed Central

40. Mohammad S., Alkorta I. J. Phys. Chem. A. 2006, 110, 10817.https://doi.org/10.1021/jp062620d.10.1021/jp062620dSuche in Google Scholar PubMed

41. Wu CF. Polymer. 2010, 51, 4452. https://doi.org/10.1016/j.polymer.2010.07.019.10.1016/j.polymer.2010.07.019Suche in Google Scholar

Supplementary material

The online version of this article offers supplementary material https://doi.org/10.1515/polyeng-2019-0293.

Received: 2019-09-09
Accepted: 2020-03-03
Published Online: 2020-05-08
Published in Print: 2020-05-26

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 13.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2019-0293/html
Button zum nach oben scrollen