Structure-properties relationship for energy storage redox polymers: a review
-
Narendra Singh Chundawat
Abstract
Redox-active polymers among the energy storage materials (ESMs) are very attractive due to their exceptional advantages such as high stability and processability as well as their simple manufacturing. Their applications are found to useful in electric vehicle, ultraright computers, intelligent electric gadgets, mobile sensor systems, and portable intelligent clothing. They are found to be more efficient and advantageous in terms of superior processing capacity, quick loading unloading, stronger security, lengthy life cycle, versatility, adjustment to various scales, excellent fabrication process capabilities, light weight, flexible, most significantly cost efficiency, and non-toxicity in order to satisfy the requirement for the usage of these potential applications. The redox-active polymers are produced through organic synthesis, which allows the design and free modification of chemical constructions, which allow for the structure of organic compounds. The redox-active polymers can be finely tuned for the desired ESMs applications with their chemical structures and electrochemical properties. The redox-active polymers synthesis also offers the benefits of high-scale, relatively low reaction, and a low demand for energy. In this review we discussed the relationship between structural properties of different polymers for solar energy and their energy storage applications.
References
1. Choi J. W., Aurbach D. Nat. Rev. Mater. 2016, 1, 16013. https://doi.org/10.1002/biot.201000136.Suche in Google Scholar
2. Casado N., Hernández G., Sardon H., Mecerreyes D. Prog. Polym. Sci. 2016, 52, 107−135. https://doi.org/10.1016/j.progpolymsci.2015.08.003.Suche in Google Scholar
3. Häupler B., Wild A., Schubert U. S. Adv. Energy Mater. 2015, 5, 1402034. https://doi.org/10.1002/aenm.201402034.Suche in Google Scholar
4. Liu T., Wei X., Nie Z., Sprenkle V., Wang W. Adv. Energy Mater. 2015, 6, 1501449. https://doi.org/10.1002/aenm.201501449.Suche in Google Scholar
5. Liu J., Zhang J. G., Yang Z., Lemmon J. P., Imhoff C., Graff G. L., Li L., Hu J., Wang C., Xiao J., et al. Adv. Funct. Mater. 2013, 23, 929–946. https://doi.org/10.1002/adfm.201200690.Suche in Google Scholar
6. Ulaganathan M., Aravindan V., Yan Q., Madhavi S., Skyllas-Kazacos M., Lim T. M. Adv. Mater. 2016, 3, 1500309. https://doi.org/10.1002/admi.201500309.Suche in Google Scholar
7. Kim K. J., Park M. S., Kim Y. J., Kim J. H., Dou S. X., Skyllas-Kazacos M., J. Mater. Chem. A 2015, 3, 16913–16933. https://doi.org/10.1039/C5TA02613J.Suche in Google Scholar
8. Grey C. P., Tarascon J. M. Sustainability and in situ monitoring in battery development, Nat. Mater. 2017, 16, 45–56, doi: 10.1038/nmat4777.10.1038/nmat4777Suche in Google Scholar PubMed
9. Lewis N. S. Science 2016, 351, aad1920–aad1920. https://doi.org/10.1126/science.aad1920.Suche in Google Scholar
10. Zhang X., Mi C. C., Yin C. J. Power Sources 2014, 245, 292–300. https://doi.org/10.1016/j.jpowsour.2013.06.117.Suche in Google Scholar
11. Larcher D., Tarascon J. M. Nat. Chem. 2015, 7, 19–29. https://doi.org/10.1038/nchem.2085.Suche in Google Scholar
12. Yu M. Z., Ren X. D., Ma L., Wu Y. Y. Nat. Commun. 2014, 5, 5111. https://doi.org/10.1038/ncomms6111.Suche in Google Scholar
13. Kundu D., Black R., Adams B., Nazar L. F. ACS Cent. Sci. 2015, 1, 510–515. https://doi.org/10.1021/acscentsci.5b00267.Suche in Google Scholar
14. Casado N., Herńandez G., Sardon H., Mecerreyes D. Prog. Polym. Sci. 2016, 52, 107–135. https://doi.org/10.1016/j.progpolymsci.2015.08.003.Suche in Google Scholar
15. Boudouris B. W. Curr. Opin. Chem. Eng. 2013, 2, 294–301. https://doi.org/10.1016/j.coche.2013.07.002.Suche in Google Scholar
16. Root S. E., Savagatrup S., Printz A. D., Rodriquez D., Lipomi D. J. Chem. Rev. 2017, 117, 6467–6499. https://doi.org/10.1021/acs.chemrev.7b00003.Chauhan N. P. S. Biocid. Polym., De Gruyter, Berlin/Boston 2019, https://doi.org/10.1515/9783110639131.Suche in Google Scholar
17. McNaught A. D. Wilkinson A. IUPAC compendium of chemical terminology, 2nd ed.; Blackwell Science Publication: Oxford, UK, 1997. ISBN 0865426848.Suche in Google Scholar
18. Castellanos S., Gaidelis V., Jankauskas V., Grazulevicius J. V., Brillas E., López-Calahorra, F., Juliá L., Velasco D. Chem. Commun. 2010, 46, 5130–5132. https://doi.org/10.1039/c0cc00529k.Suche in Google Scholar
19. Tomlinson E. P., Hay M. E., Boudouris B. W. Macromol. 2014, 47, 6145–6158. https://doi.org/10.1021/ma5014572.Suche in Google Scholar
20. Rostro L., Baradwaj A. G., Boudouris, B. W. ACS Appl. Mater. Interfaces 2013, 5, 9896–9901. https://doi.org/10.1021/am403223s.Suche in Google Scholar
21. Song Z., Zhan H., Zhou Y. Chem. Commun. 2009, 4, 448–450. https://doi.org/10.1039/B814515F.Suche in Google Scholar
22. Lee W., Suzuki S., Miyayama M. Nanomaterials 2014, 4, 599–611. https://doi.org/10.3390/nano4030599.Suche in Google Scholar
23. Fahey D. R., Hensley H. D., Ash C. E., Senn D. R. Macromolecules 1997, 30, 387−393. https://doi.org/10.1021/ma961015d.Suche in Google Scholar
24. Álvaro C., Jorge M., Nuno R., Francisco B. Int. J. Energy Res. 2015, 39, 889–918. https://doi.org/10.1002/er.3260.Suche in Google Scholar
25. Chanyong C., Soohyun K., Riyul K., Yunsuk C., Soowhan K., Ho-Young J., Jung Hoon Y., Hee-Tak K. Renew. Sustain. Energy Rev. 2017, 69, 263-274. https://doi.org/10.1016/j.rser.2016.11.188.Suche in Google Scholar
26. Seel F., Güttler H. J., Simon G., Więckowski A. Pure Appl. Chem. 1997, 49, 45−54. https://doi.org/10.1351/pac197749010045.Suche in Google Scholar
27. Kim D. J., Hermann, K. R., Prokofjevs A., Otley M. T., Pezzato C., Owczarek M., Stoddart, J. F. J. Am. Chem. Soc. 2017, 139, 6635–6643. https://doi.org/10.1021/jacs.7b01209.Suche in Google Scholar
28. Liang Y., Tao Z., Chen J. Adv. Energy Mater. 2012, 2, 742–769. https://doi.org/10.1002/aenm.201100795.Suche in Google Scholar
29. Byon H. R., Lee S. W., Chen S., Hammond P. T., Shao Horn Y. Carbon 2011, 49, 457−467. https://doi.org/10.1016/j.carbon.2010.09.042.Suche in Google Scholar
30. Choi B. G., Yang M., Hong W. H., Choi J. W., Huh Y. S. ACS Nano 2012, 6, 4020−4028. https://doi.org/10.1021/nn3003345.Suche in Google Scholar
31. Wang G., Shen X., Yao J., Park J. Carbon 2009, 47, 2049−2053. https://doi.org/10.1016/j.carbon.2009.03.053.Suche in Google Scholar
32. Lian P., Zhu X., Liang S., Li Z., Yang W. Wang H. Electrochim. Acta 2010, 55, 3909−3914. https://doi.org/10.1016/j.electacta.2010.02.025.Suche in Google Scholar
33. Sun Y., Wu Q., Shi G. Energy Environ. Sci. 2011, 4, 1113−1132. https://doi.org/10.1039/C0EE00683A.Suche in Google Scholar
34. Byon H. R., Gallant B. M., Lee S. W., Shao-Horn Y. Adv. Funct. Mater. 2013, 23, 1037–1045. https://doi.org/10.1002/adfm.201200697.Suche in Google Scholar
35. Lee S. W., Gallant B. M., Byon H. R., Hammond P. T., Shao-Horn Y. Energy Environ. Sci. 2011, 4, 1972–1985. https://doi.org/10.1039/C0EE00642D.Suche in Google Scholar
36. Xu Y., Sheng K., Li C., Shi G. ACS Nano 2010, 4, 4324−4330. https://doi.org/10.1021/nn101187z.Suche in Google Scholar
37. Zhou Y., Bao Q., Tang L. A. L., Zhong Y., Loh K. P. Chem. Mater. 2009, 21, 2950−2956. https://doi.org/10.1021/cm9006603.Suche in Google Scholar
38. Chen W., Yan L. Nanoscale 2011, 3, 3132−3137. https://doi.org/10.1039/c1nr10355e.Suche in Google Scholar
39. Zhao J., Ren W., Cheng H. M. J. Mater. Chem. 2012, 22, 20197–20202. https://doi.org/10.1039/C2JM34128J.Suche in Google Scholar
40. Gan T., Sun J., Huang K., Song L., Li Y. Sensors Actuators B Chem 2013, 177, 412–418. https://doi.org/10.1016/j.snb.2012.11.033.Suche in Google Scholar
41. Kim S. K., Kim Y. K., Lee H., Lee S. B., Park H. S. Chem. Sus. Chem. 2014, 7, 1094–1101. https://doi.org/10.1002/cssc.201301061.Suche in Google Scholar
42. Milczarek G., Inganas O. Science 2012, 335, 1468–1471. https://doi.org/10.1126/science.Suche in Google Scholar
43. Kim Y. J., Wu W., Chun S. E., Whitacre J. F., Bettinger C. J. Proc. Natl. Acad. Sci. USA 2013, 110, 20912–20917. https://doi.org/10.1073/pnas.1314345110.Suche in Google Scholar
44. Kim J., Lee J., You J., Park M. S., Hossain M. S. A., Yamauchi Y., Kim J. H. Mater. Horiz. 2016, 3, 517–535. https://doi.org/10.1039/C6MH00165C.Suche in Google Scholar
45. Kolb H. C., Finn M. G., Sharpless K. B. Angew. Chem. Int. Ed. 2001, 40, 2004–2021. https://doi.org/10.1002/1521-3773(20010601)40:11<2004::aid-anie2004>3.3.co;2-x.10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5Suche in Google Scholar
46. Hu P., Wang H., Yang Y., Yang J., Lin J., Guo L. Adv. Mater. 2016, 28, 3486–3492. https://doi.org/10.1002/adma.201505917.Suche in Google Scholar
47. Hu P., Chen T., Yang Y., Wang H., Luo Z., Yang J., Fu H., Guo L. Nanoscale 2017, 9, 1423–1427. https://doi.org/10.1039/C6NR09190C.Suche in Google Scholar
48. Pande N., Jambhale A., Jaspal D., Ambekar J., Kulkarni M. Inorg. Nano-Metal Chem. 2020, 50, 205–209. https://doi.org/10.1080/24701556.2019.1705340.Suche in Google Scholar
49. Jung K. N., Kim J., Yamauchi Y., Park M. S., Lee J. W., Kim J. H. J. Mater. Chem. A, 2016, 4, 14050–14068. https://doi.org/10.1039/C6TA04510C.Suche in Google Scholar
50. Kim J., Kim J., Ariga K. Joule 2017, 1, 739–768. https://doi.org/10.1016/j.joule.2017.08.018.Suche in Google Scholar
51. Mozafari M., Chauhan N. P. S. Fundamental and emerging applications of polyaniline, 1st ed.; Elsevier, Amsterdam The Netherlands, 2020. pp. 1–308.Suche in Google Scholar
52. Kim J., You J., Kim E. Macromolecules 2010, 43, 2322–2327. https://doi.org/10.1021/ma9025306.Suche in Google Scholar
53. Chauhan N. P. S., Mozafari M., Chundawat N. S., Meghwal K., Ameta R., Ameta S. C. J. Ind. Eng. Chem. 2016, 36, 13–29. https://doi.org/10.1016/j.jiec.2016.03.003.Suche in Google Scholar
54. Wild S., Friebe C., Haupler B., Janoschka T., Schubert U. S. Chem. Rev. 2016, 116, 9438–9484. https://doi.org/10.1021/acs.chemrev.6b00070.Suche in Google Scholar
55. Song Z., Zhou H. Energy Environ. Sci. 2013, 6, 2280–2301. https://doi.org/10.1039/C3EE40709H.Suche in Google Scholar
56. Kolb H. C., Sharpless K. B. Drug Discov. Today 2003, 8, 1128–1137. https://doi.org/10.1016/S1359-6446(03)02933-7.Suche in Google Scholar
57. Yigit S., Sanyal R., Sanyal A. Chem. Asian J. 2011, 6, 2648–2659. https://doi.org/10.1002/asia.201100440.Suche in Google Scholar
58. McKay C. S., Finn M. G. Chem. Biol. 2014, 21, 1075–1101. https://doi.org/10.1016/j.chembiol.2014.09.002.Suche in Google Scholar
59. Boujioui F., Bertrand O., Ernould B., Brassinne J., Janoschka T., Schubert U. S., Vlad A., Gohy J. F. Polym. Chem. 2017, 8, 441–450. https://doi.org/10.1039/C6PY01807F.Suche in Google Scholar
60. Ernould B., Bertrand O., Minoia A., Lazzaroni R., Vlad A., Gohy J. F. RSC Adv. 2017, 7, 17301–17310. https://doi.org/10.1039/C7RA02119D.Suche in Google Scholar
61. Ryu W. H., Gittleson F. S., Thomsen J. M., Li J., Schwab M. J., Brudvig G. W., Taylor A. D. Nat. Commun.7, 12925. https://doi.org/10.1021/acsenergylett.7b00884.Suche in Google Scholar
62. Li F. J., Zhang T., Zhou H. S. Energy Environ. Sci. 2013, 6, 1125–1141. https://doi.org/10.1039/C3EE00053B.Suche in Google Scholar
63. Battistuzzi G., Borsari M., Ranieri A., Sola M. J. Am. Chem. Soc. 2002, 124, 26–27. https://doi.org/10.1021/ja017188m.Suche in Google Scholar
64. Nam W. Acc. Chem. Res. 2007, 40, 522–531. https://doi.org/10.1021/ar700027f.Suche in Google Scholar
65. Johnson C. S., Kang S. H., Vaughey J. T., Pol S. V., Balasubramanian M., Thackeray M. M. Chem. Mater. 2010, 22, 1263–1270. https://doi.org/10.1021/cm902713m.Suche in Google Scholar
66. Laoire C. O., Mukerjee S., Abraham K. M., Plichta E. J., Hendrickson M. A. J. Phys. Chem. C 2009, 113, 20127–20134. https://doi.org/10.1021/jp908090s.Suche in Google Scholar
67. Laoire C. O., Mukerjee, S., Abraham K. M., Plichta E. J., Hendrickson M. A. J. Phys. Chem. C 2010, 114, 9178–9186. https://doi.org/10.1021/jp102019.Suche in Google Scholar
68. Ryu W. H., Gittleson F. S., Schwab M., Goh T., Taylor A. D. Nano Lett. 2015, 15, 434–441. https://doi.org/10.1021/nl503760n.Suche in Google Scholar
69. Landa-Medrano I., Ruiz de Larramendi I., Ortiz-Vitoriano N., Pinedo R., Ignacio Ruiz de Larramendi J., Rojo T. J. Power Sources 2014, 249, 110–117. https://doi.org/10.1016/j.jpowsour.2013.10.077.Suche in Google Scholar
70. Chang Z., Xu J., Zhang X. Adv. Energy Mater. 2017, 7, 1700875. https://doi.org/10.1002/aenm.201700875.Suche in Google Scholar
71. Suguro M., Iwasa S., Kusachi Y., Morioka Y., Nakahara K. Macromol. Rapid Commun. 2007, 28, 1929–1933. https://doi.org/10.1002/marc.200700300.Suche in Google Scholar
72. Jahnert T., Haupler B., Janoschka T., Hager M. D., Schubert U. S. Macromol. Chem. Phys. 2013, 214, 2616–2623. https://doi.org/10.1002/macp.201300408.Suche in Google Scholar
73. Suga T., Sugita S., Ohshiro H., Oyaizu K., Nishide H. Adv. Mater. 2011, 23, 751–754. https://doi.org/10.1002/adma.201003525.Suche in Google Scholar
74. Oyaizu K., Nishide H. Adv. Mater. 2009, 21, 2339–2344. https://doi.org/10.1002/adma.200803554.Suche in Google Scholar
75. Oyaizu K., Suga T., Yoshimura K., Nishide H. Macromolecules 2008, 41, 6646–6652. https://doi.org/10.1021/ma702576z.Suche in Google Scholar
76. Nakahara K., Iwasa S., Satoh M., Morioka Y., Iriyama J., Suguro M., Hasegawa E. Chem. Phys. Lett. 2002, 359, 351–354. https://doi.org/10.1016/S0009-2614(02)00705-4.Suche in Google Scholar
77. Kim JK, Cheruvally G, Choi JW, Ahn JH, Choi DS, Song CE. J. Electrochem. Soc. 2007, 154, A839–A843. https://doi.org/10.1149/1.2752022.Suche in Google Scholar
78. Weber A. Z., Mench M. M., Meyers J. P., Ross P. N., Gostick J. T., Liu Q. J. Appl. Electrochem. 2011, 41, 1137–1164. https://doi.org/10.1007/s10800-011-0348-2.Suche in Google Scholar
79. Wei X., Xu W., Vijayakumar M., Cosimbescu L., Liu T., Sprenkle V., Wang W. Adv. Mater. 2014, 26, 7649–7653. https://doi.org/10.1002/adma.201403746.Suche in Google Scholar
80. Winsberg J., Muench S., Hagemann T., Morgenstern S., Janoschka T., Billing M., Schacher F. H., Hauffman G., Gohy J. F., Hoeppener S., et al. Polym. Chem. 2016, 7, 1711–1718. https://doi.org/10.1039/C5PY02036K.Suche in Google Scholar
81. Milczarek G., Inganäs O. Science 2012, 335, 1468–1471. https://doi.org/10.1126/science.1215159.Suche in Google Scholar
82. Son E. J., Kim J. H., Kim K., Park C. B. J. Mater. Chem. A 2016, 4, 11179–11202. https://doi.org/10.1039/C6TA03123D.Suche in Google Scholar
83. Chauhan N. P. S., Gholipourmalekabadi M, Mozafari M. J. Macromole. Sci. Part A 2017, 54, 655–661. https://doi.org/10.1080/10601325.2017.1317211.Suche in Google Scholar
84. Kim Y. J., Wu W., Chun S. E., Whitacre J. F., Bettinger C. J. Adv. Mater. 2014, 26, 6572–6579. https://doi.org/10.1002/adma.201402295.Suche in Google Scholar
85. Liu Y., Ai K., Lu L. Chem. Rev. 2014, 114, 5057–5115. https://doi.org/10.1021/cr400407a.Suche in Google Scholar
86. Meyer T. J., Huynh, V. M. H., Thorp H. H. Angew. Chem. Int. Ed. 2007, 6, 5284–304. https://doi.org/10.1002/anie.200600917.Suche in Google Scholar
87. Kord Forooshani P., Lee B. P. J. Polym. Sci. Part A Polym. Chem. 2017, 55, 9–3. https://doi.org/10.1002/pola.28368.Patil N., Jérôme C., Detrembleur C. Prog. Polym. Sci. 2018, 82, 34–91. https://doi.org/10.1016/j.progpolymsci.2018.04.002.Suche in Google Scholar
88. Schnurrer J., Lehr C. M. Int. J. Pharm. 1996, 141, 251–256. https://doi.org/10.1016/0378-5173(96)04625-X.Suche in Google Scholar
89. Coombs T. L., Keller P. J. Aquat. Toxicol. 1981, 1, 291–300. https://doi.org/10.1016/0166-445X(81)90023-0.Suche in Google Scholar
90. Mozafari M., Chauhan N. P. S. Advanced functional polymers for biomedical applications, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2019.Suche in Google Scholar
91. Baty A. M., Leavitt P. K., Siedlecki C. A., Tyler B. J., Suci P. A., Marchant R. E., Geesey G. G. Langmuir 1997, 13, 5702–5710. https://doi.org/10.1021/la9610720.Suche in Google Scholar
92. Lu Q., Oh D. X., Lee Y., Jho Y., Hwang D. S., Zeng H. Angew. Chem. Int. Ed. 2013, 52, 3944–3948. https://doi.org/10.1002/anie.201210365.Suche in Google Scholar
93. Pillai K. V., Renneckar S. Biomacromolecules 2009, 10, 798–804. https://doi.org/10.1021/bm801284y.Suche in Google Scholar
94. Dalsin J. L., Hu B. H., Lee B. P., Messersmith P. B. J. Am. Chem. Soc. 2003, 125, 4253–4258. https://doi.org/10.1021/ja0284963.Suche in Google Scholar
95. Dalsin J. L., Lin L., Tosatti S., Vörös J., Textor M., Messersmith P. B. Langmuir 2005, 21, 640–646. https://doi.org/10.1021/la048626g.Suche in Google Scholar
96. Tyson C. A., Martell A. E. J. Am. Chem. Soc. 1968, 90, 3379–3386. https://doi.org/10.1021/ja01015a015.Suche in Google Scholar
97. Chauhan N. P. S., Chundawat N. S. Inorg. Organomet. Polym., De Gruyter, Berlin 2019, 21; https://doi.org/10.1515/9781501514609.Suche in Google Scholar
98. Borgias B. A., Cooper S. R., Koh Y. B., Raymond K. N. Inorg. Chem. 1984, 23, 1009–1016. https://doi.org/10.1021/ic00176a005.Suche in Google Scholar
99. Sever M. J., Wilker J. J. Dalt. Trans. 2006, 6, 813–822. https://doi.org/10.1039/B509586G.Suche in Google Scholar
100. Chauhan N. P. S., Hosmane N. S., Mozafar M. Mater. Todays Chem. 2019, 14, 100184. https://doi.org/10.1016/j.mtchem.2019.08.003.Suche in Google Scholar
101. Yoshino K., Kotaka M., Okamoto M., Kakihana H. Chem. Soc. Jpn. 1979, 52, 3005–3009. https://doi.org/10.1246/bcsj.52.300.Suche in Google Scholar
102. Guin P. S., Das S., Mandal P. C. Int. J. Electrochem. 2011, 816202, 1–22. https://doi.org/10.4061/2011/816202.Suche in Google Scholar
103. McDowell L. M. J. Biol. Chem. 1999, 274, 20293–20295. https://doi.org/10.1074/jbc.274.29.20293.Suche in Google Scholar
104. Yang J., Cohen Stuart M. A., Kamperman M. Chem. Soc. Rev. 2014, 43, 8271–8298. https://doi.org/10.1039/C4CS00185K.Suche in Google Scholar
105. Forooshani, P. K., Lee B. P. J. Polym. Sci. Part A: Polym. Chem. 2016, 55, 9–33. https://doi.org/10.1002/pola.28368.Suche in Google Scholar
106. Yamamoto H., Ohkawa K. Amino Acids 1993, 5, 71–75. https://doi.org/10.1007/BF00806193.Suche in Google Scholar
107. Sever M. J., Wilker J. J. Tetrahedron 2009, 57, 6139–6146. https://doi.org/10.1016/S0040-4020(01)00601-9.Suche in Google Scholar
108. Statz A. R., Meagher R. J., Barron A. E., Messersmith P. B. J. Am. Chem. Soc. 2005, 127, 7972–7973. https://doi.org/10.1021/ja0522534.Suche in Google Scholar
109. Yu M., Deming T. Macromolecules. 1998, 31, 4739–4745. https://doi.org/10.1021/ma980268z.Suche in Google Scholar
110. Yin M., Yuan Y., Liu C., Wang J. Biomaterials 2009, 30, 2764–2773. https://doi.org/10.1016/j.biomaterials.2009.01.039.Suche in Google Scholar
111. Yadav N., Yadav N., Singh M. K., Hashmi, S. A. Energy Technol 2019, 1900132. https://doi.org/10.1002/ente.201900132.Suche in Google Scholar
112. Yu H., Wu J., Fan L., Xu K., Zhong X., Lin Y., Lin J. Electrochim. Acta, 2011, 56, 6881–6886. https://doi.org/10.1016/j.electacta.2011.06.039.Suche in Google Scholar
113. Yin Y., Zhou J., Mansour A. N., Zhou X. J. Power Sources 2011, 196, 5997–6002. https://doi.org/10.1016/j.jpowsour.2011.02.079.Suche in Google Scholar
114. Salunkhe R. R., Kaneti Y. V., Kim J., Ho Kim J., Yamauchi Y. Phys. Chem. Chem. Phys. 2016, 18, 29308–29315. https://doi.org/10.1039/C6CP05555A.Suche in Google Scholar
115. Gomez I., Leonet O., Alberto Blazquez J., Grande H. J., Mecerreyes D. ACS Macro Lett. 2018, 7, 419–424. https://doi.org/10.1021/acsmacrolett.8b00154.Suche in Google Scholar
116. Venkatachalam S., Nayak S. G., Labde J. V., Gharal P. R., Rao K., Kelkar A. K. Degradation and recyclability of Poly (Ethylene Terephthalate). Polyester 2012, https://doi.org/10.5772/48612.Suche in Google Scholar
117. Cai X., Lai L., Shen Z., Lin J. J. Mater.Chem. A 2017, 5, 15423–15446. https://doi.org/10.1039/C7TA04354F.Suche in Google Scholar
118. Ahmadiparidari A., Warburton R. E., Majidi L., Asadi M., Chamaani A., Jokisaari J. R., Rastegar S., Hemmat Z., Sayahpour B., Assary R. S., et al. Adv. Mater. 2019, 1902518. https://doi.org/10.1002/adma.201902518.Suche in Google Scholar
119. Ryu W. H., Gittleson F. S., Thomsen J. M., Li J., Schwab M. J., Brudvig G. W., Taylor A. D. Nat. Commun. 2016, 7, 12925. https://doi.org/10.1038/ncomms12925.Suche in Google Scholar
120. Friebe C., Schubert U. S. Top. Curr. Chem. 2017, 375.10.1007/s41061-017-0103-1Suche in Google Scholar PubMed
121. Patil N., Aqil A., Ouhib F., Admassie S., Inganäs O., Jérôme C., Detrembleur C. Adv. Mater. 2017, 29, 1703373, https://doi.org/10.1002/adma.201703373.Suche in Google Scholar
122. Lukatskaya M. R., Dunn B., Gogotsi Y. Nat. Commun. 2016, 7, 12647, https://doi.org/10.1038/ncomms12647.Suche in Google Scholar
123. Miroshnikov M., Divya K. P., Babu G., Meiyazhagan A., Arava L. M. R., Ajayan P. M., John G. J. Mater. Chem. A 2016, 4, 12370, https://doi.org/10.1039/C6TA03166H.Suche in Google Scholar
124. Wang S., Wang Q., Shao P., Han Y., Gao X., Ma L., Yuan S., Ma X., Zhou J., Feng X., Wang B. J. Am. Chem. Soc. 2017, 139, 4258–4261. https://doi.org/10.1021/jacs.7b02648.Suche in Google Scholar
125. Liu T., Kim K. C., Lee B., Chen Z., Noda S., Jang S. S., Lee S. W. Energy Environ. Sci. 2017, 10, 205–215. https://doi.org/10.1039/C6EE02641A.Suche in Google Scholar
126. Vlad A., Singh N., Melinte S., Gohy J. F., Ajayan P. M. Sci. Rep.6, 22194, https://doi.org/10.1038/srep04315.Suche in Google Scholar
127. Vlad A., Singh N., Galande C., Ajayan P. M. Adv. Energy Mater. 2015, 5, 1402115, https://doi.org/10.1002/aenm.201402115.Suche in Google Scholar
128. Béguin F., Presser V., Balducci A., Frackowiak E. Adv. Mater. 2014, 26, 2219–2251. https://doi.org/10.1002/adma.201304137.Suche in Google Scholar
129. Simon P., Gogotsi Y., Dunn B. Science 2014, 343, 1210–1211. https://doi.org/10.1126/science.1249625.Suche in Google Scholar
130. Holze R., Wu Y. P. Electrochim. Acta 2014, 122, 93–107. https://doi.org/10.1016/j.electacta.2013.08.100.Suche in Google Scholar
131. Ernould B., Devos M., Bourgeois J. P., Rolland J., Vlad A., Gohy J. F. J. Mater. Chem. A 2015, 3, 8832–8839. https://doi.org/10.1039/C5TA00570A.Suche in Google Scholar
132. Zhang L., Lyons L., Newhouse J., Zhang Z., Straughan M., Chen Z., Amine K., Hamers R. J., West R. J. Mater. Chem. 2010, 20, 8224–8226. https://doi.org/10.1039/c0jm01596b.Suche in Google Scholar
133. Zhang S. S. J. Power Sources 2006, 162, 1379–1394. https://doi.org/10.1016/j.jpowsour.2006.07.074.Suche in Google Scholar
134. Gallaway J. W., Barton S. A. C. J. Am. Chem. Soc. 2010, 130, 8527-8536. https://doi.org/10.1021/ja0781543.Suche in Google Scholar
135. Scodeller P., Carballo R., Szamocki R., Levin L., Forchiassin F., Calvo E. J. J. Am. Chem. Soc. 2010, 132, 11132–11140. https://doi.org/10.1021/ja1020487.Suche in Google Scholar
136. Pöller S., Beyl Y., Vivekananthan J., Guschin D. A., Schuhmann W. Bioelectrochemistry 2012, 87, 178–184. https://doi.org/10.1016/j.bioelechem.2011.11.015.Suche in Google Scholar
137. Guo W., Xue X., Wang S., Lin C., Wang Z. L. Nano Lett. 2012, 12, 2520–2523. https://doi.org/10.1021/nl3007159.Suche in Google Scholar
138. Xue H., Zhao J., Tang J., Gong H., He P., Zhou H., Yamauchi Y., He J. Chem. Eur. J. 2016, 22, 4915–4923. https://doi.org/10.1002/chem.201504420.Suche in Google Scholar
© 2020 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Material properties
- Structure-properties relationship for energy storage redox polymers: a review
- Effects of chain polarity of hindered phenol on the damping properties of polymer-based hybrid materials: insights into the molecular mechanism
- Effect of interfacial modification on the thermo-mechanical properties of flax reinforced polylactide stereocomplex composites
- Use of diisocyanate to enhance the flame-retardant, mechanical and crystalline properties of poly (butylene succinate-co-butylene 3-hydroxyphenylphosphinyl-propionate) (PBSH)
- Preparation and assembly
- Graphene oxide modified carbon fiber reinforced epoxy composites
- Fabrication and evaluation of polylactic acid/pectin composite scaffold via freeze extraction for tissue engineering
- Engineering and processing
- Study on the interface morphology in the induction welding joint of PEEK plate at low power
- Ionic gelated β-cyclodextrin-biotin-carboxymethyl chitosan nanoparticles prepared as carrier for oral delivery of protein drugs
Artikel in diesem Heft
- Frontmatter
- Material properties
- Structure-properties relationship for energy storage redox polymers: a review
- Effects of chain polarity of hindered phenol on the damping properties of polymer-based hybrid materials: insights into the molecular mechanism
- Effect of interfacial modification on the thermo-mechanical properties of flax reinforced polylactide stereocomplex composites
- Use of diisocyanate to enhance the flame-retardant, mechanical and crystalline properties of poly (butylene succinate-co-butylene 3-hydroxyphenylphosphinyl-propionate) (PBSH)
- Preparation and assembly
- Graphene oxide modified carbon fiber reinforced epoxy composites
- Fabrication and evaluation of polylactic acid/pectin composite scaffold via freeze extraction for tissue engineering
- Engineering and processing
- Study on the interface morphology in the induction welding joint of PEEK plate at low power
- Ionic gelated β-cyclodextrin-biotin-carboxymethyl chitosan nanoparticles prepared as carrier for oral delivery of protein drugs