Startseite Structure-properties relationship for energy storage redox polymers: a review
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Structure-properties relationship for energy storage redox polymers: a review

  • Narendra Singh Chundawat , Nishigandh Pande , Ghasem Sargazi , Mazaher Gholipourmalekabadi und Narendra Pal Singh Chauhan ORCID logo EMAIL logo
Veröffentlicht/Copyright: 8. Mai 2020
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Redox-active polymers among the energy storage materials (ESMs) are very attractive due to their exceptional advantages such as high stability and processability as well as their simple manufacturing. Their applications are found to useful in electric vehicle, ultraright computers, intelligent electric gadgets, mobile sensor systems, and portable intelligent clothing. They are found to be more efficient and advantageous in terms of superior processing capacity, quick loading unloading, stronger security, lengthy life cycle, versatility, adjustment to various scales, excellent fabrication process capabilities, light weight, flexible, most significantly cost efficiency, and non-toxicity in order to satisfy the requirement for the usage of these potential applications. The redox-active polymers are produced through organic synthesis, which allows the design and free modification of chemical constructions, which allow for the structure of organic compounds. The redox-active polymers can be finely tuned for the desired ESMs applications with their chemical structures and electrochemical properties. The redox-active polymers synthesis also offers the benefits of high-scale, relatively low reaction, and a low demand for energy. In this review we discussed the relationship between structural properties of different polymers for solar energy and their energy storage applications.


Corresponding author: Narendra Pal Singh Chauhan, Department of Chemistry, Faculty of Science, Bhupal Nobles' University, Udaipur, Rajasthan, India, E-mail:

References

1. Choi J. W., Aurbach D. Nat. Rev. Mater. 2016, 1, 16013. https://doi.org/10.1002/biot.201000136.Suche in Google Scholar

2. Casado N., Hernández G., Sardon H., Mecerreyes D. Prog. Polym. Sci. 2016, 52, 107−135. https://doi.org/10.1016/j.progpolymsci.2015.08.003.Suche in Google Scholar

3. Häupler B., Wild A., Schubert U. S. Adv. Energy Mater. 2015, 5, 1402034. https://doi.org/10.1002/aenm.201402034.Suche in Google Scholar

4. Liu T., Wei X., Nie Z., Sprenkle V., Wang W. Adv. Energy Mater. 2015, 6, 1501449. https://doi.org/10.1002/aenm.201501449.Suche in Google Scholar

5. Liu J., Zhang J. G., Yang Z., Lemmon J. P., Imhoff C., Graff G. L., Li L., Hu J., Wang C., Xiao J., et al. Adv. Funct. Mater. 2013, 23, 929–946. https://doi.org/10.1002/adfm.201200690.Suche in Google Scholar

6. Ulaganathan M., Aravindan V., Yan Q., Madhavi S., Skyllas-Kazacos M., Lim T. M. Adv. Mater. 2016, 3, 1500309. https://doi.org/10.1002/admi.201500309.Suche in Google Scholar

7. Kim K. J., Park M. S., Kim Y. J., Kim J. H., Dou S. X., Skyllas-Kazacos M., J. Mater. Chem. A 2015, 3, 16913–16933. https://doi.org/10.1039/C5TA02613J.Suche in Google Scholar

8. Grey C. P., Tarascon J. M. Sustainability and in situ monitoring in battery development, Nat. Mater. 2017, 16, 45–56, doi: 10.1038/nmat4777.10.1038/nmat4777Suche in Google Scholar PubMed

9. Lewis N. S. Science 2016, 351, aad1920–aad1920. https://doi.org/10.1126/science.aad1920.Suche in Google Scholar

10. Zhang X., Mi C. C., Yin C. J. Power Sources 2014, 245, 292–300. https://doi.org/10.1016/j.jpowsour.2013.06.117.Suche in Google Scholar

11. Larcher D., Tarascon J. M. Nat. Chem. 2015, 7, 19–29. https://doi.org/10.1038/nchem.2085.Suche in Google Scholar

12. Yu M. Z., Ren X. D., Ma L., Wu Y. Y. Nat. Commun. 2014, 5, 5111. https://doi.org/10.1038/ncomms6111.Suche in Google Scholar

13. Kundu D., Black R., Adams B., Nazar L. F. ACS Cent. Sci. 2015, 1, 510–515. https://doi.org/10.1021/acscentsci.5b00267.Suche in Google Scholar

14. Casado N., Herńandez G., Sardon H., Mecerreyes D. Prog. Polym. Sci. 2016, 52, 107–135. https://doi.org/10.1016/j.progpolymsci.2015.08.003.Suche in Google Scholar

15. Boudouris B. W. Curr. Opin. Chem. Eng. 2013, 2, 294–301. https://doi.org/10.1016/j.coche.2013.07.002.Suche in Google Scholar

16. Root S. E., Savagatrup S., Printz A. D., Rodriquez D., Lipomi D. J. Chem. Rev. 2017, 117, 6467–6499. https://doi.org/10.1021/acs.chemrev.7b00003.Chauhan N. P. S. Biocid. Polym., De Gruyter, Berlin/Boston 2019, https://doi.org/10.1515/9783110639131.Suche in Google Scholar

17. McNaught A. D. Wilkinson A. IUPAC compendium of chemical terminology, 2nd ed.; Blackwell Science Publication: Oxford, UK, 1997. ISBN 0865426848.Suche in Google Scholar

18. Castellanos S., Gaidelis V., Jankauskas V., Grazulevicius J. V., Brillas E., López-Calahorra, F., Juliá L., Velasco D. Chem. Commun. 2010, 46, 5130–5132. https://doi.org/10.1039/c0cc00529k.Suche in Google Scholar

19. Tomlinson E. P., Hay M. E., Boudouris B. W. Macromol. 2014, 47, 6145–6158. https://doi.org/10.1021/ma5014572.Suche in Google Scholar

20. Rostro L., Baradwaj A. G., Boudouris, B. W. ACS Appl. Mater. Interfaces 2013, 5, 9896–9901. https://doi.org/10.1021/am403223s.Suche in Google Scholar

21. Song Z., Zhan H., Zhou Y. Chem. Commun. 2009, 4, 448–450. https://doi.org/10.1039/B814515F.Suche in Google Scholar

22. Lee W., Suzuki S., Miyayama M. Nanomaterials 2014, 4, 599–611. https://doi.org/10.3390/nano4030599.Suche in Google Scholar

23. Fahey D. R., Hensley H. D., Ash C. E., Senn D. R. Macromolecules 1997, 30, 387−393. https://doi.org/10.1021/ma961015d.Suche in Google Scholar

24. Álvaro C., Jorge M., Nuno R., Francisco B. Int. J. Energy Res. 2015, 39, 889–918. https://doi.org/10.1002/er.3260.Suche in Google Scholar

25. Chanyong C., Soohyun K., Riyul K., Yunsuk C., Soowhan K., Ho-Young J., Jung Hoon Y., Hee-Tak K. Renew. Sustain. Energy Rev. 2017, 69, 263-274. https://doi.org/10.1016/j.rser.2016.11.188.Suche in Google Scholar

26. Seel F., Güttler H. J., Simon G., Więckowski A. Pure Appl. Chem. 1997, 49, 45−54. https://doi.org/10.1351/pac197749010045.Suche in Google Scholar

27. Kim D. J., Hermann, K. R., Prokofjevs A., Otley M. T., Pezzato C., Owczarek M., Stoddart, J. F. J. Am. Chem. Soc. 2017, 139, 6635–6643. https://doi.org/10.1021/jacs.7b01209.Suche in Google Scholar

28. Liang Y., Tao Z., Chen J. Adv. Energy Mater. 2012, 2, 742–769. https://doi.org/10.1002/aenm.201100795.Suche in Google Scholar

29. Byon H. R., Lee S. W., Chen S., Hammond P. T., Shao Horn Y. Carbon 2011, 49, 457−467. https://doi.org/10.1016/j.carbon.2010.09.042.Suche in Google Scholar

30. Choi B. G., Yang M., Hong W. H., Choi J. W., Huh Y. S. ACS Nano 2012, 6, 4020−4028. https://doi.org/10.1021/nn3003345.Suche in Google Scholar

31. Wang G., Shen X., Yao J., Park J. Carbon 2009, 47, 2049−2053. https://doi.org/10.1016/j.carbon.2009.03.053.Suche in Google Scholar

32. Lian P., Zhu X., Liang S., Li Z., Yang W. Wang H. Electrochim. Acta 2010, 55, 3909−3914. https://doi.org/10.1016/j.electacta.2010.02.025.Suche in Google Scholar

33. Sun Y., Wu Q., Shi G. Energy Environ. Sci. 2011, 4, 1113−1132. https://doi.org/10.1039/C0EE00683A.Suche in Google Scholar

34. Byon H. R., Gallant B. M., Lee S. W., Shao-Horn Y. Adv. Funct. Mater. 2013, 23, 1037–1045. https://doi.org/10.1002/adfm.201200697.Suche in Google Scholar

35. Lee S. W., Gallant B. M., Byon H. R., Hammond P. T., Shao-Horn Y. Energy Environ. Sci. 2011, 4, 1972–1985. https://doi.org/10.1039/C0EE00642D.Suche in Google Scholar

36. Xu Y., Sheng K., Li C., Shi G. ACS Nano 2010, 4, 4324−4330. https://doi.org/10.1021/nn101187z.Suche in Google Scholar

37. Zhou Y., Bao Q., Tang L. A. L., Zhong Y., Loh K. P. Chem. Mater. 2009, 21, 2950−2956. https://doi.org/10.1021/cm9006603.Suche in Google Scholar

38. Chen W., Yan L. Nanoscale 2011, 3, 3132−3137. https://doi.org/10.1039/c1nr10355e.Suche in Google Scholar

39. Zhao J., Ren W., Cheng H. M. J. Mater. Chem. 2012, 22, 20197–20202. https://doi.org/10.1039/C2JM34128J.Suche in Google Scholar

40. Gan T., Sun J., Huang K., Song L., Li Y. Sensors Actuators B Chem 2013, 177, 412–418. https://doi.org/10.1016/j.snb.2012.11.033.Suche in Google Scholar

41. Kim S. K., Kim Y. K., Lee H., Lee S. B., Park H. S. Chem. Sus. Chem. 2014, 7, 1094–1101. https://doi.org/10.1002/cssc.201301061.Suche in Google Scholar

42. Milczarek G., Inganas O. Science 2012, 335, 1468–1471. https://doi.org/10.1126/science.Suche in Google Scholar

43. Kim Y. J., Wu W., Chun S. E., Whitacre J. F., Bettinger C. J. Proc. Natl. Acad. Sci. USA 2013, 110, 20912–20917. https://doi.org/10.1073/pnas.1314345110.Suche in Google Scholar

44. Kim J., Lee J., You J., Park M. S., Hossain M. S. A., Yamauchi Y., Kim J. H. Mater. Horiz. 2016, 3, 517–535. https://doi.org/10.1039/C6MH00165C.Suche in Google Scholar

45. Kolb H. C., Finn M. G., Sharpless K. B. Angew. Chem. Int. Ed. 2001, 40, 2004–2021. https://doi.org/10.1002/1521-3773(20010601)40:11<2004::aid-anie2004>3.3.co;2-x.10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5Suche in Google Scholar

46. Hu P., Wang H., Yang Y., Yang J., Lin J., Guo L. Adv. Mater. 2016, 28, 3486–3492. https://doi.org/10.1002/adma.201505917.Suche in Google Scholar

47. Hu P., Chen T., Yang Y., Wang H., Luo Z., Yang J., Fu H., Guo L. Nanoscale 2017, 9, 1423–1427. https://doi.org/10.1039/C6NR09190C.Suche in Google Scholar

48. Pande N., Jambhale A., Jaspal D., Ambekar J., Kulkarni M. Inorg. Nano-Metal Chem. 2020, 50, 205–209. https://doi.org/10.1080/24701556.2019.1705340.Suche in Google Scholar

49. Jung K. N., Kim J., Yamauchi Y., Park M. S., Lee J. W., Kim J. H. J. Mater. Chem. A, 2016, 4, 14050–14068. https://doi.org/10.1039/C6TA04510C.Suche in Google Scholar

50. Kim J., Kim J., Ariga K. Joule 2017, 1, 739–768. https://doi.org/10.1016/j.joule.2017.08.018.Suche in Google Scholar

51. Mozafari M., Chauhan N. P. S. Fundamental and emerging applications of polyaniline, 1st ed.; Elsevier, Amsterdam The Netherlands, 2020. pp. 1–308.Suche in Google Scholar

52. Kim J., You J., Kim E. Macromolecules 2010, 43, 2322–2327. https://doi.org/10.1021/ma9025306.Suche in Google Scholar

53. Chauhan N. P. S., Mozafari M., Chundawat N. S., Meghwal K., Ameta R., Ameta S. C. J. Ind. Eng. Chem. 2016, 36, 13–29. https://doi.org/10.1016/j.jiec.2016.03.003.Suche in Google Scholar

54. Wild S., Friebe C., Haupler B., Janoschka T., Schubert U. S. Chem. Rev. 2016, 116, 9438–9484. https://doi.org/10.1021/acs.chemrev.6b00070.Suche in Google Scholar

55. Song Z., Zhou H. Energy Environ. Sci. 2013, 6, 2280–2301. https://doi.org/10.1039/C3EE40709H.Suche in Google Scholar

56. Kolb H. C., Sharpless K. B. Drug Discov. Today 2003, 8, 1128–1137. https://doi.org/10.1016/S1359-6446(03)02933-7.Suche in Google Scholar

57. Yigit S., Sanyal R., Sanyal A. Chem. Asian J. 2011, 6, 2648–2659. https://doi.org/10.1002/asia.201100440.Suche in Google Scholar

58. McKay C. S., Finn M. G. Chem. Biol. 2014, 21, 1075–1101. https://doi.org/10.1016/j.chembiol.2014.09.002.Suche in Google Scholar

59. Boujioui F., Bertrand O., Ernould B., Brassinne J., Janoschka T., Schubert U. S., Vlad A., Gohy J. F. Polym. Chem. 2017, 8, 441–450. https://doi.org/10.1039/C6PY01807F.Suche in Google Scholar

60. Ernould B., Bertrand O., Minoia A., Lazzaroni R., Vlad A., Gohy J. F. RSC Adv. 2017, 7, 17301–17310. https://doi.org/10.1039/C7RA02119D.Suche in Google Scholar

61. Ryu W. H., Gittleson F. S., Thomsen J. M., Li J., Schwab M. J., Brudvig G. W., Taylor A. D. Nat. Commun.7, 12925. https://doi.org/10.1021/acsenergylett.7b00884.Suche in Google Scholar

62. Li F. J., Zhang T., Zhou H. S. Energy Environ. Sci. 2013, 6, 1125–1141. https://doi.org/10.1039/C3EE00053B.Suche in Google Scholar

63. Battistuzzi G., Borsari M., Ranieri A., Sola M. J. Am. Chem. Soc. 2002, 124, 26–27. https://doi.org/10.1021/ja017188m.Suche in Google Scholar

64. Nam W. Acc. Chem. Res. 2007, 40, 522–531. https://doi.org/10.1021/ar700027f.Suche in Google Scholar

65. Johnson C. S., Kang S. H., Vaughey J. T., Pol S. V., Balasubramanian M., Thackeray M. M. Chem. Mater. 2010, 22, 1263–1270. https://doi.org/10.1021/cm902713m.Suche in Google Scholar

66. Laoire C. O., Mukerjee S., Abraham K. M., Plichta E. J., Hendrickson M. A. J. Phys. Chem. C 2009, 113, 20127–20134. https://doi.org/10.1021/jp908090s.Suche in Google Scholar

67. Laoire C. O., Mukerjee, S., Abraham K. M., Plichta E. J., Hendrickson M. A. J. Phys. Chem. C 2010, 114, 9178–9186. https://doi.org/10.1021/jp102019.Suche in Google Scholar

68. Ryu W. H., Gittleson F. S., Schwab M., Goh T., Taylor A. D. Nano Lett. 2015, 15, 434–441. https://doi.org/10.1021/nl503760n.Suche in Google Scholar

69. Landa-Medrano I., Ruiz de Larramendi I., Ortiz-Vitoriano N., Pinedo R., Ignacio Ruiz de Larramendi J., Rojo T. J. Power Sources 2014, 249, 110–117. https://doi.org/10.1016/j.jpowsour.2013.10.077.Suche in Google Scholar

70. Chang Z., Xu J., Zhang X. Adv. Energy Mater. 2017, 7, 1700875. https://doi.org/10.1002/aenm.201700875.Suche in Google Scholar

71. Suguro M., Iwasa S., Kusachi Y., Morioka Y., Nakahara K. Macromol. Rapid Commun. 2007, 28, 1929–1933. https://doi.org/10.1002/marc.200700300.Suche in Google Scholar

72. Jahnert T., Haupler B., Janoschka T., Hager M. D., Schubert U. S. Macromol. Chem. Phys. 2013, 214, 2616–2623. https://doi.org/10.1002/macp.201300408.Suche in Google Scholar

73. Suga T., Sugita S., Ohshiro H., Oyaizu K., Nishide H. Adv. Mater. 2011, 23, 751–754. https://doi.org/10.1002/adma.201003525.Suche in Google Scholar

74. Oyaizu K., Nishide H. Adv. Mater. 2009, 21, 2339–2344. https://doi.org/10.1002/adma.200803554.Suche in Google Scholar

75. Oyaizu K., Suga T., Yoshimura K., Nishide H. Macromolecules 2008, 41, 6646–6652. https://doi.org/10.1021/ma702576z.Suche in Google Scholar

76. Nakahara K., Iwasa S., Satoh M., Morioka Y., Iriyama J., Suguro M., Hasegawa E. Chem. Phys. Lett. 2002, 359, 351–354. https://doi.org/10.1016/S0009-2614(02)00705-4.Suche in Google Scholar

77. Kim JK, Cheruvally G, Choi JW, Ahn JH, Choi DS, Song CE. J. Electrochem. Soc. 2007, 154, A839–A843. https://doi.org/10.1149/1.2752022.Suche in Google Scholar

78. Weber A. Z., Mench M. M., Meyers J. P., Ross P. N., Gostick J. T., Liu Q. J. Appl. Electrochem. 2011, 41, 1137–1164. https://doi.org/10.1007/s10800-011-0348-2.Suche in Google Scholar

79. Wei X., Xu W., Vijayakumar M., Cosimbescu L., Liu T., Sprenkle V., Wang W. Adv. Mater. 2014, 26, 7649–7653. https://doi.org/10.1002/adma.201403746.Suche in Google Scholar

80. Winsberg J., Muench S., Hagemann T., Morgenstern S., Janoschka T., Billing M., Schacher F. H., Hauffman G., Gohy J. F., Hoeppener S., et al. Polym. Chem. 2016, 7, 1711–1718. https://doi.org/10.1039/C5PY02036K.Suche in Google Scholar

81. Milczarek G., Inganäs O. Science 2012, 335, 1468–1471. https://doi.org/10.1126/science.1215159.Suche in Google Scholar

82. Son E. J., Kim J. H., Kim K., Park C. B. J. Mater. Chem. A 2016, 4, 11179–11202. https://doi.org/10.1039/C6TA03123D.Suche in Google Scholar

83. Chauhan N. P. S., Gholipourmalekabadi M, Mozafari M. J. Macromole. Sci. Part A 2017, 54, 655–661. https://doi.org/10.1080/10601325.2017.1317211.Suche in Google Scholar

84. Kim Y. J., Wu W., Chun S. E., Whitacre J. F., Bettinger C. J. Adv. Mater. 2014, 26, 6572–6579. https://doi.org/10.1002/adma.201402295.Suche in Google Scholar

85. Liu Y., Ai K., Lu L. Chem. Rev. 2014, 114, 5057–5115. https://doi.org/10.1021/cr400407a.Suche in Google Scholar

86. Meyer T. J., Huynh, V. M. H., Thorp H. H. Angew. Chem. Int. Ed. 2007, 6, 5284–304. https://doi.org/10.1002/anie.200600917.Suche in Google Scholar

87. Kord Forooshani P., Lee B. P. J. Polym. Sci. Part A Polym. Chem. 2017, 55, 9–3. https://doi.org/10.1002/pola.28368.Patil N., Jérôme C., Detrembleur C. Prog. Polym. Sci. 2018, 82, 34–91. https://doi.org/10.1016/j.progpolymsci.2018.04.002.Suche in Google Scholar

88. Schnurrer J., Lehr C. M. Int. J. Pharm. 1996, 141, 251–256. https://doi.org/10.1016/0378-5173(96)04625-X.Suche in Google Scholar

89. Coombs T. L., Keller P. J. Aquat. Toxicol. 1981, 1, 291–300. https://doi.org/10.1016/0166-445X(81)90023-0.Suche in Google Scholar

90. Mozafari M., Chauhan N. P. S. Advanced functional polymers for biomedical applications, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2019.Suche in Google Scholar

91. Baty A. M., Leavitt P. K., Siedlecki C. A., Tyler B. J., Suci P. A., Marchant R. E., Geesey G. G. Langmuir 1997, 13, 5702–5710. https://doi.org/10.1021/la9610720.Suche in Google Scholar

92. Lu Q., Oh D. X., Lee Y., Jho Y., Hwang D. S., Zeng H. Angew. Chem. Int. Ed. 2013, 52, 3944–3948. https://doi.org/10.1002/anie.201210365.Suche in Google Scholar

93. Pillai K. V., Renneckar S. Biomacromolecules 2009, 10, 798–804. https://doi.org/10.1021/bm801284y.Suche in Google Scholar

94. Dalsin J. L., Hu B. H., Lee B. P., Messersmith P. B. J. Am. Chem. Soc. 2003, 125, 4253–4258. https://doi.org/10.1021/ja0284963.Suche in Google Scholar

95. Dalsin J. L., Lin L., Tosatti S., Vörös J., Textor M., Messersmith P. B. Langmuir 2005, 21, 640–646. https://doi.org/10.1021/la048626g.Suche in Google Scholar

96. Tyson C. A., Martell A. E. J. Am. Chem. Soc. 1968, 90, 3379–3386. https://doi.org/10.1021/ja01015a015.Suche in Google Scholar

97. Chauhan N. P. S., Chundawat N. S. Inorg. Organomet. Polym., De Gruyter, Berlin 2019, 21; https://doi.org/10.1515/9781501514609.Suche in Google Scholar

98. Borgias B. A., Cooper S. R., Koh Y. B., Raymond K. N. Inorg. Chem. 1984, 23, 1009–1016. https://doi.org/10.1021/ic00176a005.Suche in Google Scholar

99. Sever M. J., Wilker J. J. Dalt. Trans. 2006, 6, 813–822. https://doi.org/10.1039/B509586G.Suche in Google Scholar

100. Chauhan N. P. S., Hosmane N. S., Mozafar M. Mater. Todays Chem. 2019, 14, 100184. https://doi.org/10.1016/j.mtchem.2019.08.003.Suche in Google Scholar

101. Yoshino K., Kotaka M., Okamoto M., Kakihana H. Chem. Soc. Jpn. 1979, 52, 3005–3009. https://doi.org/10.1246/bcsj.52.300.Suche in Google Scholar

102. Guin P. S., Das S., Mandal P. C. Int. J. Electrochem. 2011, 816202, 1–22. https://doi.org/10.4061/2011/816202.Suche in Google Scholar

103. McDowell L. M. J. Biol. Chem. 1999, 274, 20293–20295. https://doi.org/10.1074/jbc.274.29.20293.Suche in Google Scholar

104. Yang J., Cohen Stuart M. A., Kamperman M. Chem. Soc. Rev. 2014, 43, 8271–8298. https://doi.org/10.1039/C4CS00185K.Suche in Google Scholar

105. Forooshani, P. K., Lee B. P. J. Polym. Sci. Part A: Polym. Chem. 2016, 55, 9–33. https://doi.org/10.1002/pola.28368.Suche in Google Scholar

106. Yamamoto H., Ohkawa K. Amino Acids 1993, 5, 71–75. https://doi.org/10.1007/BF00806193.Suche in Google Scholar

107. Sever M. J., Wilker J. J. Tetrahedron 2009, 57, 6139–6146. https://doi.org/10.1016/S0040-4020(01)00601-9.Suche in Google Scholar

108. Statz A. R., Meagher R. J., Barron A. E., Messersmith P. B. J. Am. Chem. Soc. 2005, 127, 7972–7973. https://doi.org/10.1021/ja0522534.Suche in Google Scholar

109. Yu M., Deming T. Macromolecules. 1998, 31, 4739–4745. https://doi.org/10.1021/ma980268z.Suche in Google Scholar

110. Yin M., Yuan Y., Liu C., Wang J. Biomaterials 2009, 30, 2764–2773. https://doi.org/10.1016/j.biomaterials.2009.01.039.Suche in Google Scholar

111. Yadav N., Yadav N., Singh M. K., Hashmi, S. A. Energy Technol 2019, 1900132. https://doi.org/10.1002/ente.201900132.Suche in Google Scholar

112. Yu H., Wu J., Fan L., Xu K., Zhong X., Lin Y., Lin J. Electrochim. Acta, 2011, 56, 6881–6886. https://doi.org/10.1016/j.electacta.2011.06.039.Suche in Google Scholar

113. Yin Y., Zhou J., Mansour A. N., Zhou X. J. Power Sources 2011, 196, 5997–6002. https://doi.org/10.1016/j.jpowsour.2011.02.079.Suche in Google Scholar

114. Salunkhe R. R., Kaneti Y. V., Kim J., Ho Kim J., Yamauchi Y. Phys. Chem. Chem. Phys. 2016, 18, 29308–29315. https://doi.org/10.1039/C6CP05555A.Suche in Google Scholar

115. Gomez I., Leonet O., Alberto Blazquez J., Grande H. J., Mecerreyes D. ACS Macro Lett. 2018, 7, 419–424. https://doi.org/10.1021/acsmacrolett.8b00154.Suche in Google Scholar

116. Venkatachalam S., Nayak S. G., Labde J. V., Gharal P. R., Rao K., Kelkar A. K. Degradation and recyclability of Poly (Ethylene Terephthalate). Polyester 2012, https://doi.org/10.5772/48612.Suche in Google Scholar

117. Cai X., Lai L., Shen Z., Lin J. J. Mater.Chem. A 2017, 5, 15423–15446. https://doi.org/10.1039/C7TA04354F.Suche in Google Scholar

118. Ahmadiparidari A., Warburton R. E., Majidi L., Asadi M., Chamaani A., Jokisaari J. R., Rastegar S., Hemmat Z., Sayahpour B., Assary R. S., et al. Adv. Mater. 2019, 1902518. https://doi.org/10.1002/adma.201902518.Suche in Google Scholar

119. Ryu W. H., Gittleson F. S., Thomsen J. M., Li J., Schwab M. J., Brudvig G. W., Taylor A. D. Nat. Commun. 2016, 7, 12925. https://doi.org/10.1038/ncomms12925.Suche in Google Scholar

120. Friebe C., Schubert U. S. Top. Curr. Chem. 2017, 375.10.1007/s41061-017-0103-1Suche in Google Scholar PubMed

121. Patil N., Aqil A., Ouhib F., Admassie S., Inganäs O., Jérôme C., Detrembleur C. Adv. Mater. 2017, 29, 1703373, https://doi.org/10.1002/adma.201703373.Suche in Google Scholar

122. Lukatskaya M. R., Dunn B., Gogotsi Y. Nat. Commun. 2016, 7, 12647, https://doi.org/10.1038/ncomms12647.Suche in Google Scholar

123. Miroshnikov M., Divya K. P., Babu G., Meiyazhagan A., Arava L. M. R., Ajayan P. M., John G. J. Mater. Chem. A 2016, 4, 12370, https://doi.org/10.1039/C6TA03166H.Suche in Google Scholar

124. Wang S., Wang Q., Shao P., Han Y., Gao X., Ma L., Yuan S., Ma X., Zhou J., Feng X., Wang B. J. Am. Chem. Soc. 2017, 139, 4258–4261. https://doi.org/10.1021/jacs.7b02648.Suche in Google Scholar

125. Liu T., Kim K. C., Lee B., Chen Z., Noda S., Jang S. S., Lee S. W. Energy Environ. Sci. 2017, 10, 205–215. https://doi.org/10.1039/C6EE02641A.Suche in Google Scholar

126. Vlad A., Singh N., Melinte S., Gohy J. F., Ajayan P. M. Sci. Rep.6, 22194, https://doi.org/10.1038/srep04315.Suche in Google Scholar

127. Vlad A., Singh N., Galande C., Ajayan P. M. Adv. Energy Mater. 2015, 5, 1402115, https://doi.org/10.1002/aenm.201402115.Suche in Google Scholar

128. Béguin F., Presser V., Balducci A., Frackowiak E. Adv. Mater. 2014, 26, 2219–2251. https://doi.org/10.1002/adma.201304137.Suche in Google Scholar

129. Simon P., Gogotsi Y., Dunn B. Science 2014, 343, 1210–1211. https://doi.org/10.1126/science.1249625.Suche in Google Scholar

130. Holze R., Wu Y. P. Electrochim. Acta 2014, 122, 93–107. https://doi.org/10.1016/j.electacta.2013.08.100.Suche in Google Scholar

131. Ernould B., Devos M., Bourgeois J. P., Rolland J., Vlad A., Gohy J. F. J. Mater. Chem. A 2015, 3, 8832–8839. https://doi.org/10.1039/C5TA00570A.Suche in Google Scholar

132. Zhang L., Lyons L., Newhouse J., Zhang Z., Straughan M., Chen Z., Amine K., Hamers R. J., West R. J. Mater. Chem. 2010, 20, 8224–8226. https://doi.org/10.1039/c0jm01596b.Suche in Google Scholar

133. Zhang S. S. J. Power Sources 2006, 162, 1379–1394. https://doi.org/10.1016/j.jpowsour.2006.07.074.Suche in Google Scholar

134. Gallaway J. W., Barton S. A. C. J. Am. Chem. Soc. 2010, 130, 8527-8536. https://doi.org/10.1021/ja0781543.Suche in Google Scholar

135. Scodeller P., Carballo R., Szamocki R., Levin L., Forchiassin F., Calvo E. J. J. Am. Chem. Soc. 2010, 132, 11132–11140. https://doi.org/10.1021/ja1020487.Suche in Google Scholar

136. Pöller S., Beyl Y., Vivekananthan J., Guschin D. A., Schuhmann W. Bioelectrochemistry 2012, 87, 178–184. https://doi.org/10.1016/j.bioelechem.2011.11.015.Suche in Google Scholar

137. Guo W., Xue X., Wang S., Lin C., Wang Z. L. Nano Lett. 2012, 12, 2520–2523. https://doi.org/10.1021/nl3007159.Suche in Google Scholar

138. Xue H., Zhao J., Tang J., Gong H., He P., Zhou H., Yamauchi Y., He J. Chem. Eur. J. 2016, 22, 4915–4923. https://doi.org/10.1002/chem.201504420.Suche in Google Scholar

Received: 2020-01-09
Accepted: 2020-03-27
Published Online: 2020-05-08
Published in Print: 2020-05-26

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 12.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2019-0395/html
Button zum nach oben scrollen