Startseite Effect of interfacial modification on the thermo-mechanical properties of flax reinforced polylactide stereocomplex composites
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Effect of interfacial modification on the thermo-mechanical properties of flax reinforced polylactide stereocomplex composites

  • Huihui Zhang ORCID logo EMAIL logo , Yuzeng Li , Gesheng Yang , Minmin Yu und Huili Shao
Veröffentlicht/Copyright: 30. April 2020
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The flax and equivalent proportion of poly(L-lactic acid)/poly(d-lactic acid) (PLLA/PDLA) were melt compounded and injection molded to prepare flax reinforced polylactide stereocomplex (sc-PLA) bio-composite, and two different coupling agents, hexamethylene diisocyanate (HMDI) and maleic anhydride grafted polypropylene (MAPP), were used to modify the interface of composite, then the influence of different interfacial modification on the structure and properties of composite was investigated. The results showed HMDI modification decreased the total crystallinity of composite but promoted the formation of stereocomplex crystallites (sc), whereas MAPP modification could improve both the total crystallinity and sc crystallinity. HMDI modification significantly improved the interfacial compatibility of composite, and thereby effectively improved the tensile strength and initial storage modulus of composite. By contrast, the interfacial compatibility of flax/sc-PLA composite was weakened by MAPP modification. Although the tensile properties of flax/sc-PLA/MAPP composite decreased, the impact strength of composite was increased by 12.1% than the unmodified composite. Therefore, the tailored flax/sc-PLA composite with varying properties could be prepared by different interfacial modification.


Corresponding author: Huihui Zhang, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai, 201620, China, E-mail:

Award Identifier / Grant number: 16ZR1401600

Award Identifier / Grant number: 16D110620

  1. Research funding: This work was supported by the Natural Science Foundation of Shanghai (16ZR1401600); and Fundamental Research Funds for the Central Universities (16D110620).

Acknowledgments

We thank Research Center of Analysis and Measurement, Donghua University and Equipment platform of College of Material Science and Engineering, Donghua University for the analysis and characterization of flax/sc-PLA composites.

References

1. Ikada Y., Jamshidi K., Tsuji H., Hyon S. H. Macromolecules 1987, 20, 904–906. https://doi.org/10.1021/ma00170a034.Suche in Google Scholar

2. Tsuji H. Macromol. Biosci. 2005, 5, 569–597. https://doi.org/10.1002/mabi.200500062.Suche in Google Scholar

3. Tsuji H., Ikada Y. Polymer 1999, 40, 6699–6708. https://doi.org/10.1016/S0032-3861(99)00004-X.Suche in Google Scholar

4. Tsuji H., Ikada Y. Macromolecules 1993, 26, 6918–6926. https://doi.org/10.1021/ma00077a032.Suche in Google Scholar

5. Xu H., Tang S., Chen J., Xin P., Pu W., Lu Y. Polym. Bull. 2012, 68, 1135–1151. https://doi.org/10.1007/s00289-011-0673-y.Suche in Google Scholar

6. Srithep Y., Pholharn D., Turng L. S., Veang-in O. Polym. Degrad. Stab. 2015, 120, 290–299. https://doi.org/10.1016/j.polymdegradstab.2015.07.017.Suche in Google Scholar

7. Ming R., Yang G., Li Y., Wang R., Zhang H., Shao H. Polym. Compos. 2017, 38, 472–478. https://doi.org/10.1002/pc.23605.Suche in Google Scholar

8. Yu T., Ren J., Li S., Yuan H., Li Y. Compos. Appl. Sci. Manuf. 2010, 41, 499–505. https://doi.org/10.1016/j.compositesa.2009.12.006.Suche in Google Scholar

9. Li X., Zheng X., Wu Y. Acta Mater. Compos. Sin. 2012, 29, 94–98. (in Chinese). https://doi.org/10.13801/j.cnki.fhclxb.2012.04.018.Suche in Google Scholar

10. Huda M. S., Drzal L. T., Misra M., Mohanty A. K. J. Appl. Polym. Sci. 2006, 102, 4856–4869. https://doi.org/10.1002/app.24829.Suche in Google Scholar

11. Ganster J., Erdmann J., Fink H. P. Kunststoffe International 2011, 12, 46–49.Suche in Google Scholar

12. Ganster J., Fink H. P. In Cellulose Fibers: Bio- and Nano-Polymer Composites; Kalia S., Kaith B. S., Kaur I., Eds. Springer Berlin Heidelberg: Germany, 2011, p. 500, Chapter 18. https://doi.org/10.1007/978-3-642-17370-7_18.Suche in Google Scholar

13. Li Y., Li Q., Yang G., Ming R., Yu M., Zhang H., Shao H. Adv. Polym. Tech. 2018, 898, 2329–2337. https://doi.org/10.1002/adv.21824.Suche in Google Scholar

14. Sarasua J. R., Arraiza A. L., Balerdi P., Maiza I. Polym. Eng. Sci. 2005, 45, 745–753. https://doi.org/10.1002/pen.20331.Suche in Google Scholar

15. Zhang H., Ming R., Yang G., Li Y., Li Q., Shao H. Polym. Eng. Sci. 2015, 55, 2553–2558. https://doi.org/10.1002/pen.24147.Suche in Google Scholar

16. Wang H., Sun X., Seib P. J. Appl. Polym. Sci. 2001, 82, 1761–1767. https://doi.org/10.1002/app.2018.Suche in Google Scholar

17. Wang Y. M., Mano J. F. J. Appl. Polym. Sci. 2008, 107, 1621–1627. https://doi.org/10.1002/app.27260.Suche in Google Scholar

Received: 2020-01-15
Accepted: 2020-03-09
Published Online: 2020-04-30
Published in Print: 2020-05-26

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 3.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2020-0010/pdf
Button zum nach oben scrollen