Abstract
The interfacial interaction between the fiber and matrix is the most important factor which influences the performance of the carbon fiber-epoxy composites. In this study, the graphitic surface of the carbon fibers was modified with graphene oxide nanomaterials by using a spray coating technique which is an easy, cheap, and quick method. The carbon fiber-reinforced epoxy matrix composites were prepared by hand layup technique using neat carbon fibers and 0.5, 1 and 2% by weight graphene oxide (GO) modified carbon fibers. As a result of SEM analysis, it was observed that GO particles were homogeneously coated on the surface of the carbon fibers. Furthermore, Young's modulus increased from 35.14 to 43.40 GPa, tensile strength increased from 436 to 672 MPa, and the elongation at break was maintained around 2% even in only 2% GO addition.
Funding source: Bursa Technical University Scientific Research Project
Award Identifier / Grant number: 182N34
Research funding: This work was supported by Bursa Technical University Scientific Research Project (BAP) (grant number 182N34).
References
1. Zhang J. PhD Thesis, Ecole Centrale Paris. Paris, France, 2012.Suche in Google Scholar
2. Liu L., Jia C. Y., He J., Zhoa F., Fan D., Xing L., Wang M., Wang F., Jiang Z., Huang Y. Compos. Sci. Technol. 2015, 121, 56–72. https://doi.org/10.1016/j.compscitech.2015.08.002.https://doi.org/10.1016/j.compscitech.2015.08.002Suche in Google Scholar
3. Yao S. S., Jin F. L., Rhee K. Y., Hui D., Park S. J. Compos. B Eng. 2018, 142, 241–250. https://doi.org/10.1016/j.compositesb.2017.12.007.https://doi.org/10.1016/j.compositesb.2017.12.007Suche in Google Scholar
4. Jiang D., Liu L., Wu G., Zhang Q., Long J., Wu Z., Xie F., Huang Y. Polym. Compos. 2017, 38, 2425–2432. https://doi.org/10.1002/pc.23828.https://doi.org/10.1002/pc.23828Suche in Google Scholar
5. Tiwari S., Bijwe J. Proc. Tech. 2014, 14, 505–512. https://doi.org/10.1016/j.protcy.2014.08.064.https://doi.org/10.1016/j.protcy.2014.08.064Suche in Google Scholar
6. Jin F. L., Lee S. Y, Park S. J. Carbon Lett. 2013, 14, 76–88. https://doi.org/10.5714/CL.2013.14.2.076.https://doi.org/10.5714/CL.2013.14.2.076Suche in Google Scholar
7. Yuan J. M., Fan Z. F., Yang Q. C., Li W., Wu Z. J. Compos. Sci. Technol. 2018, 164, 222–228. https://doi.org/10.1016/j.compscitech.2018.05.043.https://doi.org/10.1016/j.compscitech.2018.05.043Suche in Google Scholar
8. Qiu J., Li J., Yuan Z., Zeng H., Chen X. Appl. Compos. Mater. 2018, 25, 853–860. https://doi.org/10.1007/s10443-018-9727-8.https://doi.org/10.1007/s10443-018-9727-8Suche in Google Scholar
9. Liu L., Yan F., Li M., Zhang M., Xiao L., Lei S., Yuhui A. Compos. Appl. Sci. Manuf. 2018, 107, 616–625. https://doi.org/10.1016/j.compositesa.2018.02.009.https://doi.org/10.1016/j.compositesa.2018.02.009Suche in Google Scholar
10. Alsaadi M., Bulut M., Erklig A., Jabbar A. Compos. B Eng. 2018, 152, 169–179. https://doi.org/10.1016/j.compositesb.2018.07.015.https://doi.org/10.1016/j.compositesb.2018.07.015Suche in Google Scholar
11. Yao X., Gao X., Jiang J., Xu C., Deng C., Wang J. Compos. B Eng. 2018, 132, 170–177. https://doi.org/10.1016/j.compositesb.2017.09.012.https://doi.org/10.1016/j.compositesb.2017.09.012Suche in Google Scholar
12. Munoz-Velez M. F., Valadez-Gonzalez A., Herrera-Franco P. J. Express Polym. Lett. 2017, 11, 704–718. https://doi.org/10.3144/expresspolymlett.2017.68.https://doi.org/10.3144/expresspolymlett.2017.68Suche in Google Scholar
13. Wu G., Chen L., Liu L., Huang Y. Polym. Compos. 2018, 39, 3509–3518. https://doi.org/10.1002/pc.24370.https://doi.org/10.1002/pc.24370Suche in Google Scholar
14. Zhang Q., Jiang D., Liu L., Yudong H., Jun L., Guangshun W., Zijian W., Ahmad U., Jiang G., Xi Z., Zhanhu G. J. Nanosci. Nanotechnol. 2015, 15, 9807–9811. https://doi.org/10.1166/jnn.2015.10625.https://doi.org/10.1166/jnn.2015.10625Suche in Google Scholar
15. Tang L. G., Kardos J. L. Polym. Compos. 1997. 18, 100–113. https://doi.org/10.1002/pc.10265.https://doi.org/10.1002/pc.10265Suche in Google Scholar
16. Hung P. Y., Lau K. T., Fox B., Hameed N., Lee J. H., Hui D. Compos. B Eng. 2018, 133, 240–257. https://doi.org/10.1016/j.compositesb.2017.09.010.https://doi.org/10.1016/j.compositesb.2017.09.010Suche in Google Scholar
17. Yuan X., Zhu B., Cai X., Qiao K., Zhao S., Zhang M., Lu J. Compos. Appl. Sci. Manuf. 2018, 111, 83–93. https://doi.org/10.1016/j.compositesa.2018.05.010.https://doi.org/10.1016/j.compositesa.2018.05.010Suche in Google Scholar
18. Wang C., Li J., Sun S., Li X., Feng Z., Jiang B., Huang Y. Compos. Sci. Technol. 2016, 135, 46–53. https://doi.org/10.1016/j.compscitech.2016.07.009.https://doi.org/10.1016/j.compscitech.2016.07.009Suche in Google Scholar
19. Ashori A., Rahmani H., Bahrami R. Polym. Test 2015, 48, 82–88. https://doi.org/10.1016/j.polymertesting.2015.09.010.https://doi.org/10.1016/j.polymertesting.2015.09.010Suche in Google Scholar
20. Gu H., Tadakamalla S., Zhang X., Huang Y., Jiang Y., Colorada H.A., Luo Z., Wei S., Guo Z. J. Mater. Chem. C 2013, 1, 729–743. https://doi.org/10.1039/C2TC00379A.https://doi.org/10.1039/C2TC00379ASuche in Google Scholar
21. Pathak A. K., Borah M., Gupta A., Yolcozeki T., Dhakate S. R. Compos. Sci. Technol. 2016, 135, 28–38. https://doi.org/10.1016/j.compscitech.2016.09.007.https://doi.org/10.1016/j.compscitech.2016.09.007Suche in Google Scholar
22. Wan Y. J., Tang L. C., Yan D., Zhao L., Li Y. B., Wu L. B., Jiang J. X., Lai G. Q. Compos. Sci. Technol. 2013, 82, 60–68. https://doi.org/10.1016/j.compscitech.2013.04.009.https://doi.org/10.1016/j.compscitech.2013.04.009Suche in Google Scholar
23. Rohini R., Katti P., Bose S. Polymer 2015, 70, A17–A34. https://doi.org/10.1016/j.polymer.2015.06.016.https://doi.org/10.1016/j.polymer.2015.06.016Suche in Google Scholar
24. Bowman S., Hu X., Jiang Q., Qiu Y., Liu W., Wei Y. Coatings 2018, 8, 149.https://doi.org/10.3390/coatings8040149.https://doi.org/10.3390/coatings8040149Suche in Google Scholar
25. Wang C. C., Ge H. Y., Liu H. S., Liang J. J. Polym. Compos. 2016, 37, 2719–2726. https://doi.org/10.1002/pc.23466.https://doi.org/10.1002/pc.23466Suche in Google Scholar
26. Yuan X., Zhu B., Cai X., Qiao K., Zhao S., Yu J. Appl. Surf. Sci. 2018, 458, 996–1005. https://doi.org/10.1016/j.apsusc.2018.06.161.https://doi.org/10.1016/j.apsusc.2018.06.161Suche in Google Scholar
27. Marcano D. C., Kosynkin D. V., Berlin J. M., Sinitskii A., Sun Z., Slesarev A., Alemany L. B., Lu W., Tour J. M. ACS Nano 2010, 4, 4806–4814. https://doi.org/10.1021/nn1006368.https://doi.org/10.1021/nn1006368Suche in Google Scholar
28. Dai Z., Shi F., Zhang B., Li M., Zhang Z. Appl. Surf. Sci. 2011, 257, 6980–6985. https://doi.org/10.1016/j.apsusc.2011.03.047.https://doi.org/10.1016/j.apsusc.2011.03.047Suche in Google Scholar
29. Dilsiz N., Wightman J. P. Carbon 1999, 37, 1105–1114. https://doi.org/10.1016/S0008-6223(98)00300-5.https://doi.org/10.1016/S0008-6223(98)00300-5Suche in Google Scholar
30. Dilsiz N., Wightman J. P. Colloids Surf., A 2000, 164, 325–336. https://doi.org/10.1016/S0927-7757(99)00400-8.https://doi.org/10.1016/S0927-7757(99)00400-8Suche in Google Scholar
31. Lee H., Ohsawa I., Takahashi J. Appl. Surf. Sci. 2015, 328, 241–246. https://doi.org/10.1016/j.apsusc.2014.12.012.https://doi.org/10.1016/j.apsusc.2014.12.012Suche in Google Scholar
32. Zhong M., Liu Y. T., Xie X. M. J. Mater. Chem. B 2015, 3, 4001–4008. https://doi.org/10.1039/C5TB00075K.https://doi.org/10.1039/C5TB00075KSuche in Google Scholar
33. Choi E. Y., Han T. H., Hong J. H., Kim J. E., Lee S. H., Kim H. W., Kim S. J. Mater. Chem. 2010, 20, 1907–1912. https://doi.org/10.1039/B919074K.https://doi.org/10.1039/B919074KSuche in Google Scholar
34. Tas M., Altin Y., Bedeloglu A. J. Text. Inst. 2019. 110, 67–73. https://doi.org/10.1080/00405000.2018.1460039.https://doi.org/10.1080/00405000.2018.1460039Suche in Google Scholar
35. Tuinstra F. K., Koenig J. L. J. Chem. Phys. 1970, 53, 1126–1130. https://doi.org/10.1063/1.1674108.https://doi.org/10.1063/1.1674108Suche in Google Scholar
36. Kudin K. N., Ozbas B., Schniepp H. C., Prud'homme R. K., Aksay I. A., Car R. Nano Lett. 2008, 8, 36–41. https://doi.org/10.1021/nl071822y.https://doi.org/10.1021/nl071822ySuche in Google Scholar
37. Javadi A., Zheng Q., Payen F., Javadi A., Altin Y., Cai Z., Sabo R., Gong S. ACS Appl. Mater. Interfac. 2013, 5, 5969–5975. https://doi.org/10.1021/am400171y.https://doi.org/10.1021/am400171ySuche in Google Scholar
38. Stankovich S., Dikin D. A., Richard D. P., Kohlhaas K. A., Kleinhammes A., Jia Y., Wu Y., Nguyen S. T., Ruoff R. S. Carbon 2007, 45, 1558–1565. https://doi.org/10.1016/j.carbon.2007.02.034.https://doi.org/10.1016/j.carbon.2007.02.034Suche in Google Scholar
39. Perumbilavil, S., Sankar, P., Priya Rose, T., Philip, R. Appl. Phys. Lett. 2015, 107, 051104. https://doi.org/10.1063/1.4928124.https://doi.org/10.1063/1.4928124Suche in Google Scholar
40. Fu J., Zhang M., Jin L., Liu L., Li N., Shang L., Li M., Xiao L., Ao Y. Appl. Surf. Sci. 2011, 257, 6980–6985. https://doi.org/10.1016/j.apsusc.2011.03.047.https://doi.org/10.1016/j.apsusc.2011.03.047Suche in Google Scholar
41. Sengupta I., Chakraborty S., Talukdar M., Pal S., Chakraborty S. J. Mater. Res. 2018, 33, 4113–4122. https://doi.org/10.1557/jmr.2018.338.https://doi.org/10.1557/jmr.2018.338Suche in Google Scholar
42. Ganguly A., Sharma S., Papakonstantinou P., Hamilton J. J. Phys. Chem. C 2011, 115, 17009–17019. https://doi.org/10.1021/jp203741y.https://doi.org/10.1021/jp203741ySuche in Google Scholar
43. Terzioglu P.Dr., Altin Y., Kalemtas A.Dr., Celik Bedeloglu A. J Polym Eng 40. 2020, 152–157. https://doi.org/10.1515/polyeng-2019-0240.https://doi.org/10.1515/polyeng-2019-0240Suche in Google Scholar
© 2020 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Material properties
- Structure-properties relationship for energy storage redox polymers: a review
- Effects of chain polarity of hindered phenol on the damping properties of polymer-based hybrid materials: insights into the molecular mechanism
- Effect of interfacial modification on the thermo-mechanical properties of flax reinforced polylactide stereocomplex composites
- Use of diisocyanate to enhance the flame-retardant, mechanical and crystalline properties of poly (butylene succinate-co-butylene 3-hydroxyphenylphosphinyl-propionate) (PBSH)
- Preparation and assembly
- Graphene oxide modified carbon fiber reinforced epoxy composites
- Fabrication and evaluation of polylactic acid/pectin composite scaffold via freeze extraction for tissue engineering
- Engineering and processing
- Study on the interface morphology in the induction welding joint of PEEK plate at low power
- Ionic gelated β-cyclodextrin-biotin-carboxymethyl chitosan nanoparticles prepared as carrier for oral delivery of protein drugs
Artikel in diesem Heft
- Frontmatter
- Material properties
- Structure-properties relationship for energy storage redox polymers: a review
- Effects of chain polarity of hindered phenol on the damping properties of polymer-based hybrid materials: insights into the molecular mechanism
- Effect of interfacial modification on the thermo-mechanical properties of flax reinforced polylactide stereocomplex composites
- Use of diisocyanate to enhance the flame-retardant, mechanical and crystalline properties of poly (butylene succinate-co-butylene 3-hydroxyphenylphosphinyl-propionate) (PBSH)
- Preparation and assembly
- Graphene oxide modified carbon fiber reinforced epoxy composites
- Fabrication and evaluation of polylactic acid/pectin composite scaffold via freeze extraction for tissue engineering
- Engineering and processing
- Study on the interface morphology in the induction welding joint of PEEK plate at low power
- Ionic gelated β-cyclodextrin-biotin-carboxymethyl chitosan nanoparticles prepared as carrier for oral delivery of protein drugs