Startseite Effect of gas on the polymer temperature in external gas-assisted injection molding
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Effect of gas on the polymer temperature in external gas-assisted injection molding

  • Taidong Li , Jiquan Li EMAIL logo , Frederik Desplentere , Xinxin Xia , Xiang Peng und Shaofei Jiang
Veröffentlicht/Copyright: 27. Mai 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The introduction of gas is the principal difference between external gas-assisted injection molding (EGAIM) and conventional injection molding. In this study, the effects of gas thickness and gas delay time on polymer temperature were discussed. A modified one-dimensional transient heat conduction model of polymer was established to reveal the relationships between polymer temperature and gas thickness and gas delay time in EGAIM. The temperature histories of polymer were obtained by the simulation methods, including Moldflow and ANSYS, and were verified by comparing the experimental data to numerical simulation results. The effects of gas thickness and gas delay time on the temperature histories of polymer will be discussed in detail. The results showed that the polymer temperature is strongly affected by the heat preservation of gas, which in turn, increases with the increase of gas thickness and delay time. This paper provides quantitative methods and theoretical guidance for the study of the effects of gas on the polymer temperature in EGAIM.

Award Identifier / Grant number: 51575491, 51505421 and U1610112)

Award Identifier / Grant number: LY19E050004 and LY18E050020

Funding statement: This work was supported by the National Natural Science Foundation (Grant Nos. 51575491, 51505421 and U1610112) and the Natural Science Foundation of Zhejiang Province (Grant Nos. LY19E050004 and LY18E050020).

References

[1] Nian SC, Li MH, Huang MS. Int. J. Heat Mass Transfer 2015, 86, 358–368.10.1016/j.ijheatmasstransfer.2015.03.027Suche in Google Scholar

[2] Su HY, Nian SC, Huang MS. Int. Commun. Heat Mass Transfer 2015, 66, 1–10.10.1016/j.icheatmasstransfer.2015.05.003Suche in Google Scholar

[3] Chen SC, Lin YC, Huang SW. Polym. Eng. Sci. 2010, 50, 2085–2092.10.1002/pen.21747Suche in Google Scholar

[4] Jiang SF, Zheng W, Zhang JB. Appl Math Inform Sci. 2012, 6, 665–671.10.1090/S0033-569X-2012-01257-3Suche in Google Scholar

[5] Jiang SF, Tao JL, Li JQ. Adv Mech Eng. 2014, 14, 1–11.10.1186/s12888-014-0367-8Suche in Google Scholar

[6] Aditya L, Mahlia TMI. Renewable Sustainable Energy Rev. 2017, 73, 1352–1365.10.1016/j.rser.2017.02.034Suche in Google Scholar

[7] Rehman HU. Appl. Energy. 2017, 185, 1585–1594.10.1016/j.apenergy.2016.01.026Suche in Google Scholar

[8] Spinnler M, Winter ERF. Int. J. Heat Mass Transfer. 2004, 47, 1305–1312.10.1016/j.ijheatmasstransfer.2003.08.012Suche in Google Scholar

[9] Hao JH, Chen Q, Hu K. Int. J. Heat Mass Transfer. 2016, 92, 1–7.10.1016/j.ijheatmasstransfer.2015.08.076Suche in Google Scholar

[10] Lee SC, Cunnington GR. J. Thermophys. Heat Transfer. 2000, 14, 121–136.10.2514/2.6508Suche in Google Scholar

[11] Zhu H, Sankar BV, Haftka RT. Struct. Multidiscip. O. 2004, 28, 349–355.10.1007/s00158-004-0463-3Suche in Google Scholar

[12] Daryabeigi K. J. Thermophys. Heat Transfer. 2003, 17, 10–20.10.2514/2.6746Suche in Google Scholar

[13] Kuang T, Yu C, Xu B. J. Polym. Eng. Sci. 2016, 36, 139–148.10.1515/polyeng-2014-0369Suche in Google Scholar

[14] Hsu C, Huang C T, Chang R Y. J. Polym. Eng. 2018, 38, 93–105.10.1515/polyeng-2016-0395Suche in Google Scholar

[15] Wang L, Yang W, Huang L. Plast Rubber Compos. 2010, 39, 385–391.10.1179/174328910X12777566997450Suche in Google Scholar

[16] Wang L, Yang B, Yang W. Colloid Polym. Sci. 2011, 289, 1661–1671.10.1007/s00396-011-2483-zSuche in Google Scholar

[17] Zhang CQ, Zhao P, Gu F. Anal. Chem. 2018, 90, 9226–9233.10.1021/acs.analchem.8b01724Suche in Google Scholar PubMed

[18] Zhang CQ, Zhao P, Wen W. Polym. Test. 2018, 70, 520–525.10.1016/j.polymertesting.2018.08.010Suche in Google Scholar

[19] Zhang CQ, Zhao P, Xie J. Polym. Test. 2018, 67, 177–182.10.1016/j.polymertesting.2018.03.008Suche in Google Scholar

[20] Sun HM, Kawara Z, Ueki Y. Heat Transfer Eng. 2011, 32, 968–973.10.1080/01457632.2011.556382Suche in Google Scholar

[21] Zhao P, Yang W, Wang X. Proc. Inst. Mech. Eng., Part B. 2017, 233, 204-214.10.1177/0954405417718593Suche in Google Scholar

[22] Li JQ, Li TD, Jia YD. Polym. Test. 2018, 71, 182–191.10.1016/j.polymertesting.2018.09.004Suche in Google Scholar

[23] Yang B, Fu XR, Yang W. Polym. Eng. Sci. 2008, 48, 1707–1717.10.1002/pen.21076Suche in Google Scholar

[24] Zhao P, Yang D, Zhou HM. Polym.-Plast. Technol. Eng. 2011, 50, 581–587.10.1080/03602559.2010.543741Suche in Google Scholar

[25] Chau SW, Lin YW. J. Polym. Eng. 2006, 26, 433–450.10.1515/POLYENG.2006.26.5.431Suche in Google Scholar

[26] Lu HB, Du SY. Polym. Chem. 2014, 5, 1155–1162.10.1039/C3PY01256ESuche in Google Scholar

[27] Lin HY, Young WB. Appl. Math. Modell. 2009, 33, 3746–3755.10.1016/j.apm.2008.12.012Suche in Google Scholar

[28] Sun L, Venart JES. Int. J. Thermophys. 2006, 27, 996–996.10.1007/s10765-006-0071-0Suche in Google Scholar

Received: 2019-01-29
Accepted: 2019-04-20
Published Online: 2019-05-27
Published in Print: 2019-07-26

©2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 15.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2019-0028/html
Button zum nach oben scrollen