Startseite Polyurethane membrane with a cyclodextrin-modified carbon nanotube for pervaporation of phenol/water mixture
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Polyurethane membrane with a cyclodextrin-modified carbon nanotube for pervaporation of phenol/water mixture

  • Hong Ye EMAIL logo , Yu Wang , Xiang Zhang , Zhongguo Zhang und Boyu Song
Veröffentlicht/Copyright: 14. September 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Polyurethane (PU) membrane has great potential in pervaporation recovery of phenol from water. In order to improve the permeability of the membrane, cyclodextrin was attached onto carboxylic and hydroxylate carbon nanotubes (CNTs) by physical and chemical methods, with which modified CNTs/PU membranes were prepared. The results showed that the addition of modified CNTs greatly increases the permeability and comprehensive performance of PU membranes in the pervaporation separation of a phenol/water mixture. With 0.5% phenol content in feed at 80°C, the flux and pervaporation separation index of blank PU are 6.10 and 324 kg·μm·m−2·h−1, while those of chemically modified carboxylic CNTs/PU membranes are 156.1 and 655.8 kg·μm·m−2·h−1, respectively.

Award Identifier / Grant number: 20906001

Funding statement: The authors gratefully acknowledge the financial support provided by Beijing Natural Science Foundation (L140009), the Importation and Development of High-Caliber Talents Project of Beijing Municipal Institutions (CIT&TCD201404032) and the National Natural Science Foundation of China (no. 20906001).

Acknowledgments

The authors gratefully acknowledge the financial support provided by Beijing Natural Science Foundation (L140009), the Importation and Development of High-Caliber Talents Project of Beijing Municipal Institutions (CIT&TCD201404032) and the National Natural Science Foundation of China (no. 20906001).

References

[1] Yousef RI, El-Eswed B, Ala’a H. Chem. Eng. J. 2011, 171, 1143–1149.10.1016/j.cej.2011.05.012Suche in Google Scholar

[2] Mohan D, Sarswat A, Ok YS, Pittman CU. Bioresource Technol. 2014, 160, 191–202.10.1016/j.biortech.2014.01.120Suche in Google Scholar

[3] Gong Z, Li S, Han W, Wang J, Ma J, Zhang X. Appl. Surf. Sci. 2016, 362, 459–468.10.1016/j.apsusc.2015.11.251Suche in Google Scholar

[4] Muhanned AH. J. Appl. Polym. Sci. 2010, 117, 1908–1913.10.1002/app.32107Suche in Google Scholar

[5] Hao X, Pritzker M, Feng X. J. Membr. Sci. 2009, 335, 96–102.10.1016/j.memsci.2009.02.036Suche in Google Scholar

[6] Zhang X, Li C, Hao X, Feng X, Zhang H, Hou H, Liang G. Chem. Eng. Sci. 2014, 108, 183–187.10.1016/j.ces.2014.01.011Suche in Google Scholar

[7] Li C, Zhang X, Hao X, Feng X, Pang X, Zhang H. Chem. Eng. Sci. 2015, 127, 106–114.10.1016/j.ces.2015.01.039Suche in Google Scholar

[8] Yahaya GO. Separ. Sci. Technol. 2009, 44, 2894–2914.10.1080/01496390903018103Suche in Google Scholar

[9] Gupta T, Pradhan NC, Adhikari B. J. Membr. Sci. 2003, 217, 43–53.10.1016/S0376-7388(03)00069-3Suche in Google Scholar

[10] Gupta T, Pradhan NC, Adhikari B. Bull. Mater. Sci. 2002, 25, 533–536.10.1007/BF02710544Suche in Google Scholar

[11] Das S, Banthia AK, Adhikari B. Chem. Eng. J. 2008, 138, 215–223.10.1016/j.cej.2007.06.030Suche in Google Scholar

[12] Das S, Banthia AK, Adhikari B. Chem. Eng. Sci. 2006, 61, 6454–6467.10.1016/j.ces.2006.06.014Suche in Google Scholar

[13] Ye H, Wang J, Chen XP, Shi S. J. Macromol. Sci. Part A: Pure Appl. Chem. 2013, 50, 661–669.10.1080/10601325.2013.784582Suche in Google Scholar

[14] Sajjan AM, Kumar BJ, Kittur AA, Kariduraganavar MY. J. Membr. Sci. 2013, 425, 77–88.10.1016/j.memsci.2012.08.042Suche in Google Scholar

[15] Li Q, Wang X, Yuan D. J. Chromatogr. A 2009, 1216, 1305–1311.10.1016/j.chroma.2008.12.082Suche in Google Scholar PubMed

[16] Yamasaki H, Makihata Y, Fukunaga K. J. Chem. Technol. Biot. 2006, 81, 1271–1276.10.1002/jctb.1545Suche in Google Scholar

[17] Jiang LY, Chung TS. J. Membr. Sci. 2009, 327, 216–225.10.1016/j.memsci.2008.11.036Suche in Google Scholar

[18] ChenJ, Dyer MJ, Yu MF. J. Am. Chem. Soc. 2001, 123, 6201–6202.10.1021/ja015766tSuche in Google Scholar PubMed

[19] Liu K, Fu H, Xie Y, Zhang L, Pan K, Zhou W. J. Phys. Chem. A. 2008, 112, 951–957.10.1021/jp0756754Suche in Google Scholar

[20] Dresselhaus MS, Jorio A, Hofmann M, Dresselhaus G, Saito R. Nano Lett. 2010, 10, 751–758.10.1021/nl904286rSuche in Google Scholar PubMed

[21] Dresselhaus MS, Saito R. Phil. Trans. Math. Phys. Eng. Sci. 2010, 368, 5355–5377.10.1098/rsta.2010.0213Suche in Google Scholar

[22] Zhang Y, Zhang J. Acta Chim. Sinica. 2012, 70, 2293–2305.10.6023/A12070478Suche in Google Scholar

[23] Bai Y, Qian J, Zhang C, Zhang L, An Q, Chen H. J. Membr. Sci. 2008, 325, 932–939.10.1016/j.memsci.2008.09.019Suche in Google Scholar

[24] Ye H, Wang J, Wang Y, Chen XP, Shi SP. Iran. Polym. J. 2013, 22, 623–633.10.1007/s13726-013-0161-3Suche in Google Scholar

[25] Seymour RW, Cooper SL. Macromolecules 1973, 6, 48–53.10.1021/ma60031a008Suche in Google Scholar

[26] Pongkitwitoon S. Temperature dependent microphase mixing of model polyurethanes. The Pennsylvania State University: Pennsylvania, 2010, 40–41.Suche in Google Scholar

[27] Ravey M, Pearce EM. J. Appl. Polym. Sci. 1997, 63, 47–74.10.1002/(SICI)1097-4628(19970103)63:1<47::AID-APP7>3.0.CO;2-SSuche in Google Scholar

[28] Zhou Y, Pervin F, Rangari VK, Jeelani S. J. Mater. Process. Tech. 2007, 191, 347–351.10.1016/j.jmatprotec.2007.03.059Suche in Google Scholar

[29] Saha MC, Kabir ME, Jeelani S. Mater. Sci. Eng. A 2008, 479, 213–222.10.1016/j.msea.2007.06.060Suche in Google Scholar

[30] Barick AK, Tripathy DK. Mater. Sci. Eng. B 2011, 176, 1435–1447.10.1016/j.mseb.2011.08.001Suche in Google Scholar

[31] Peng F, Hu C, Jiang Z. J. Membr. Sci. 2007, 297, 236–242.10.1016/j.memsci.2007.03.048Suche in Google Scholar

[32] Ye H, Wang J, Chen XP. J. Macromol. Sci. Part A: Pure Appl. Chem. 2013, 50, 340–349.10.1080/10601325.2013.755891Suche in Google Scholar

[33] Xue C, Du GQ, Chen LJ, Ren JG, Sun JX, Bai FW, Yang ST. Sci. Rep. 2014, 4, 1–7.10.1038/srep05925Suche in Google Scholar

[34] Ma MD, Shen L, Sheridan J, Liu JZ, Chen C, Zheng Q. Phys. Rev. E. 2011, 83, 2027–2032.10.1103/PhysRevE.83.036316Suche in Google Scholar

[35] Yeang QW, Zein SHS, Sulong AB, Tan SH. Sep. Purif. Technol. 2013, 107, 252–263.10.1016/j.seppur.2013.01.031Suche in Google Scholar

[36] Hu SY, Zhang Y, Lawless D, Feng X. J. Membr. Sci. 2012, 417, 34–44.10.1016/j.memsci.2012.06.010Suche in Google Scholar

[37] Sajjan AM, Kumar BKJ, Kittur AA, Kariduraganavar MY. J. Membr. Sci. 2013, 425, 77–88.10.1016/j.memsci.2012.08.042Suche in Google Scholar

[38] Choi JH, Jegal J, Kim WN, Choi HS. J. Appl. Polym. Sci. 2009, 111, 2186–2193.10.1002/app.29222Suche in Google Scholar

[39] Huang RYM, Yeom CK. J. Membr. Sci. 1990, 51, 273–292.10.1016/S0376-7388(00)80351-8Suche in Google Scholar

[40] Sajjan AM, Kumar BKJ, Kittur AA, Kariduraganavar MY. J. Ind. Eng. Chem. 2013, 19, 427–437.10.1016/j.jiec.2012.08.032Suche in Google Scholar

[41] Wu P, Field RW, England R, Brisdon B. J. Membr. Sci. 2001, 190, 147–157.10.1016/S0376-7388(01)00408-2Suche in Google Scholar

[42] Pithan F, Staudt-Bickel C. ChemPhysChem 2003, 4, 967–973.10.1002/cphc.200300707Suche in Google Scholar PubMed

[43] Budd PM, Elabas ES, Ghanem BS, Makhseed S, McKeown NB, Msayib KJ, Tattershall CE, Wang D. Adv. Mater. 2004, 16, 456–459.10.1002/adma.200306053Suche in Google Scholar

Received: 2016-5-10
Accepted: 2016-8-3
Published Online: 2016-9-14
Published in Print: 2017-5-24

©2017 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 3.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2016-0155/html
Button zum nach oben scrollen