Home Polyurethane membrane with a cyclodextrin-modified carbon nanotube for pervaporation of phenol/water mixture
Article
Licensed
Unlicensed Requires Authentication

Polyurethane membrane with a cyclodextrin-modified carbon nanotube for pervaporation of phenol/water mixture

  • Hong Ye EMAIL logo , Yu Wang , Xiang Zhang , Zhongguo Zhang and Boyu Song
Published/Copyright: September 14, 2016
Become an author with De Gruyter Brill

Abstract

Polyurethane (PU) membrane has great potential in pervaporation recovery of phenol from water. In order to improve the permeability of the membrane, cyclodextrin was attached onto carboxylic and hydroxylate carbon nanotubes (CNTs) by physical and chemical methods, with which modified CNTs/PU membranes were prepared. The results showed that the addition of modified CNTs greatly increases the permeability and comprehensive performance of PU membranes in the pervaporation separation of a phenol/water mixture. With 0.5% phenol content in feed at 80°C, the flux and pervaporation separation index of blank PU are 6.10 and 324 kg·μm·m−2·h−1, while those of chemically modified carboxylic CNTs/PU membranes are 156.1 and 655.8 kg·μm·m−2·h−1, respectively.

Award Identifier / Grant number: 20906001

Funding statement: The authors gratefully acknowledge the financial support provided by Beijing Natural Science Foundation (L140009), the Importation and Development of High-Caliber Talents Project of Beijing Municipal Institutions (CIT&TCD201404032) and the National Natural Science Foundation of China (no. 20906001).

Acknowledgments

The authors gratefully acknowledge the financial support provided by Beijing Natural Science Foundation (L140009), the Importation and Development of High-Caliber Talents Project of Beijing Municipal Institutions (CIT&TCD201404032) and the National Natural Science Foundation of China (no. 20906001).

References

[1] Yousef RI, El-Eswed B, Ala’a H. Chem. Eng. J. 2011, 171, 1143–1149.10.1016/j.cej.2011.05.012Search in Google Scholar

[2] Mohan D, Sarswat A, Ok YS, Pittman CU. Bioresource Technol. 2014, 160, 191–202.10.1016/j.biortech.2014.01.120Search in Google Scholar

[3] Gong Z, Li S, Han W, Wang J, Ma J, Zhang X. Appl. Surf. Sci. 2016, 362, 459–468.10.1016/j.apsusc.2015.11.251Search in Google Scholar

[4] Muhanned AH. J. Appl. Polym. Sci. 2010, 117, 1908–1913.10.1002/app.32107Search in Google Scholar

[5] Hao X, Pritzker M, Feng X. J. Membr. Sci. 2009, 335, 96–102.10.1016/j.memsci.2009.02.036Search in Google Scholar

[6] Zhang X, Li C, Hao X, Feng X, Zhang H, Hou H, Liang G. Chem. Eng. Sci. 2014, 108, 183–187.10.1016/j.ces.2014.01.011Search in Google Scholar

[7] Li C, Zhang X, Hao X, Feng X, Pang X, Zhang H. Chem. Eng. Sci. 2015, 127, 106–114.10.1016/j.ces.2015.01.039Search in Google Scholar

[8] Yahaya GO. Separ. Sci. Technol. 2009, 44, 2894–2914.10.1080/01496390903018103Search in Google Scholar

[9] Gupta T, Pradhan NC, Adhikari B. J. Membr. Sci. 2003, 217, 43–53.10.1016/S0376-7388(03)00069-3Search in Google Scholar

[10] Gupta T, Pradhan NC, Adhikari B. Bull. Mater. Sci. 2002, 25, 533–536.10.1007/BF02710544Search in Google Scholar

[11] Das S, Banthia AK, Adhikari B. Chem. Eng. J. 2008, 138, 215–223.10.1016/j.cej.2007.06.030Search in Google Scholar

[12] Das S, Banthia AK, Adhikari B. Chem. Eng. Sci. 2006, 61, 6454–6467.10.1016/j.ces.2006.06.014Search in Google Scholar

[13] Ye H, Wang J, Chen XP, Shi S. J. Macromol. Sci. Part A: Pure Appl. Chem. 2013, 50, 661–669.10.1080/10601325.2013.784582Search in Google Scholar

[14] Sajjan AM, Kumar BJ, Kittur AA, Kariduraganavar MY. J. Membr. Sci. 2013, 425, 77–88.10.1016/j.memsci.2012.08.042Search in Google Scholar

[15] Li Q, Wang X, Yuan D. J. Chromatogr. A 2009, 1216, 1305–1311.10.1016/j.chroma.2008.12.082Search in Google Scholar PubMed

[16] Yamasaki H, Makihata Y, Fukunaga K. J. Chem. Technol. Biot. 2006, 81, 1271–1276.10.1002/jctb.1545Search in Google Scholar

[17] Jiang LY, Chung TS. J. Membr. Sci. 2009, 327, 216–225.10.1016/j.memsci.2008.11.036Search in Google Scholar

[18] ChenJ, Dyer MJ, Yu MF. J. Am. Chem. Soc. 2001, 123, 6201–6202.10.1021/ja015766tSearch in Google Scholar PubMed

[19] Liu K, Fu H, Xie Y, Zhang L, Pan K, Zhou W. J. Phys. Chem. A. 2008, 112, 951–957.10.1021/jp0756754Search in Google Scholar

[20] Dresselhaus MS, Jorio A, Hofmann M, Dresselhaus G, Saito R. Nano Lett. 2010, 10, 751–758.10.1021/nl904286rSearch in Google Scholar PubMed

[21] Dresselhaus MS, Saito R. Phil. Trans. Math. Phys. Eng. Sci. 2010, 368, 5355–5377.10.1098/rsta.2010.0213Search in Google Scholar

[22] Zhang Y, Zhang J. Acta Chim. Sinica. 2012, 70, 2293–2305.10.6023/A12070478Search in Google Scholar

[23] Bai Y, Qian J, Zhang C, Zhang L, An Q, Chen H. J. Membr. Sci. 2008, 325, 932–939.10.1016/j.memsci.2008.09.019Search in Google Scholar

[24] Ye H, Wang J, Wang Y, Chen XP, Shi SP. Iran. Polym. J. 2013, 22, 623–633.10.1007/s13726-013-0161-3Search in Google Scholar

[25] Seymour RW, Cooper SL. Macromolecules 1973, 6, 48–53.10.1021/ma60031a008Search in Google Scholar

[26] Pongkitwitoon S. Temperature dependent microphase mixing of model polyurethanes. The Pennsylvania State University: Pennsylvania, 2010, 40–41.Search in Google Scholar

[27] Ravey M, Pearce EM. J. Appl. Polym. Sci. 1997, 63, 47–74.10.1002/(SICI)1097-4628(19970103)63:1<47::AID-APP7>3.0.CO;2-SSearch in Google Scholar

[28] Zhou Y, Pervin F, Rangari VK, Jeelani S. J. Mater. Process. Tech. 2007, 191, 347–351.10.1016/j.jmatprotec.2007.03.059Search in Google Scholar

[29] Saha MC, Kabir ME, Jeelani S. Mater. Sci. Eng. A 2008, 479, 213–222.10.1016/j.msea.2007.06.060Search in Google Scholar

[30] Barick AK, Tripathy DK. Mater. Sci. Eng. B 2011, 176, 1435–1447.10.1016/j.mseb.2011.08.001Search in Google Scholar

[31] Peng F, Hu C, Jiang Z. J. Membr. Sci. 2007, 297, 236–242.10.1016/j.memsci.2007.03.048Search in Google Scholar

[32] Ye H, Wang J, Chen XP. J. Macromol. Sci. Part A: Pure Appl. Chem. 2013, 50, 340–349.10.1080/10601325.2013.755891Search in Google Scholar

[33] Xue C, Du GQ, Chen LJ, Ren JG, Sun JX, Bai FW, Yang ST. Sci. Rep. 2014, 4, 1–7.10.1038/srep05925Search in Google Scholar

[34] Ma MD, Shen L, Sheridan J, Liu JZ, Chen C, Zheng Q. Phys. Rev. E. 2011, 83, 2027–2032.10.1103/PhysRevE.83.036316Search in Google Scholar

[35] Yeang QW, Zein SHS, Sulong AB, Tan SH. Sep. Purif. Technol. 2013, 107, 252–263.10.1016/j.seppur.2013.01.031Search in Google Scholar

[36] Hu SY, Zhang Y, Lawless D, Feng X. J. Membr. Sci. 2012, 417, 34–44.10.1016/j.memsci.2012.06.010Search in Google Scholar

[37] Sajjan AM, Kumar BKJ, Kittur AA, Kariduraganavar MY. J. Membr. Sci. 2013, 425, 77–88.10.1016/j.memsci.2012.08.042Search in Google Scholar

[38] Choi JH, Jegal J, Kim WN, Choi HS. J. Appl. Polym. Sci. 2009, 111, 2186–2193.10.1002/app.29222Search in Google Scholar

[39] Huang RYM, Yeom CK. J. Membr. Sci. 1990, 51, 273–292.10.1016/S0376-7388(00)80351-8Search in Google Scholar

[40] Sajjan AM, Kumar BKJ, Kittur AA, Kariduraganavar MY. J. Ind. Eng. Chem. 2013, 19, 427–437.10.1016/j.jiec.2012.08.032Search in Google Scholar

[41] Wu P, Field RW, England R, Brisdon B. J. Membr. Sci. 2001, 190, 147–157.10.1016/S0376-7388(01)00408-2Search in Google Scholar

[42] Pithan F, Staudt-Bickel C. ChemPhysChem 2003, 4, 967–973.10.1002/cphc.200300707Search in Google Scholar PubMed

[43] Budd PM, Elabas ES, Ghanem BS, Makhseed S, McKeown NB, Msayib KJ, Tattershall CE, Wang D. Adv. Mater. 2004, 16, 456–459.10.1002/adma.200306053Search in Google Scholar

Received: 2016-5-10
Accepted: 2016-8-3
Published Online: 2016-9-14
Published in Print: 2017-5-24

©2017 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 3.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2016-0155/html
Scroll to top button