Startseite Mathematik Some Approximation Properties of Operators Including Degenerate Appell Polynomials
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Some Approximation Properties of Operators Including Degenerate Appell Polynomials

  • Bilge Zehra Sergi , Gürhan İçöz EMAIL logo und Bayram Çekim
Veröffentlicht/Copyright: 18. Dezember 2023
Veröffentlichen auch Sie bei De Gruyter Brill

ABSTRACT

This paper is interested in a new sequence of linear positive operators including degenerate Appell polynomials. We give a convergence theorem for these operators and obtain the quantitative estimation of the approximation by using modulus of continuity, Peetre’s 𝒦-functional, Lipschitz class functions and a Voronovskaja-type theorem. In addition, we give a Kantorovich modification of these operators and derive some approximation properties.

2020 Mathematics Subject Classification: 41A25; 41A36; 33C45

(Communicated by Gregor Dolinar)


The authors would like to thank the editor and referee for their valuable comments which greatly helped improving the clarity and quality of the paper. In addition, they also would like to thank the Scientific and Technological Research Council of Turkey (TÜBİTAK) for the graduate scholarship that supported the first author.

REFERENCES

[1] Altomare, F.—Campiti, M.: Korovkin-type Approximation Theory and its Applications, De Gruyter Stud. Math., Berlin, 1994.10.1515/9783110884586Suche in Google Scholar

[2] Appell, P. E.: Sur une classe de polynômes, Ann. Sci. École Norm Sup. 9 (1880), 119–144.10.24033/asens.186Suche in Google Scholar

[3] Atakut, Ç.—Büyükyazici, İ.: Approximation by modified integral type Jakimovski-Leviatan operators, Filomat 30(1) (2016), 29–39.10.2298/FIL1601029CSuche in Google Scholar

[4] Banach, S.: Théorie des Opérations Linéaires. Monografie Matematyczne, 1932 (in French).Suche in Google Scholar

[5] Bateman, H.—Erdélyi, A.: Higher Transcendental Functions 1–3, McGraw-Hill, 1953–1955.Suche in Google Scholar

[6] Boas, R. P.—Buck, R. C.: Polynomial Expansions of Analytic Functions, Springer & Acad. Press, Canada, 1958.10.1007/978-3-642-87887-9Suche in Google Scholar

[7] Bourbaki, N.: Elements of Mathematics. Functions of a Real Variable, Addison-Wesley, 1976.Suche in Google Scholar

[8] Cai, Q. B.—Çekim, B.—İçöz, G.: Gamma generalization operators involving analytic functions, Mathematics 9(13) (2021), Art. No. 1547.10.3390/math9131547Suche in Google Scholar

[9] Carlitz, L.: A degenerate Staudt-Clausen theorem, Arch. Math. (Basel) 7 (1956), 28–33.10.1007/BF01900520Suche in Google Scholar

[10] Chihara, T. S.: An Introduction to Orthogonal Polynomials, Gordon and Breach, New York, 1978.Suche in Google Scholar

[11] Ciupa, A.: A class of integral Favard-Szász type operators, Studia Univ. Babeş-Bolyai Math. 40(1) (1995), 39–47.Suche in Google Scholar

[12] Costabile, F. A.—Longo, E.: Δh-Appell sequences and related interpolation problem, Numer. Algor. 63 (2013), 165–186.10.1007/s11075-012-9619-1Suche in Google Scholar

[13] Devore, R. A.—Lorentz, G. G.: Constructive Approximation, Springer-Verlag, Berlin, 1993.10.1007/978-3-662-02888-9Suche in Google Scholar

[14] İçöz, G.—Varma, S.—Sucu, S.: Approximation by operators including generalized Appell polynomials, Filomat 30(2) (2016), 429–440.10.2298/FIL1602429ISuche in Google Scholar

[15] Ismail, M. E.: Classical and Quantum Orthogonal Polynomials in One Variable, Cambridge Univ. Press, 2005.10.1017/CBO9781107325982Suche in Google Scholar

[16] Jakimovski, A.—Leviatan, D.: Generalized Szász operators for the approximation in the infinite interval, Mathematica (Cluj) 11(34) (1969), 97–103.Suche in Google Scholar

[17] Kantorovich, L. V.: Sur certains developpments suivant les polynômes de la forme de S. Bernstein I, II, Dokl. Akad. Nauk. SSSR (1930), 563–568, 595–600.Suche in Google Scholar

[18] Lebesgue, H.: Sur les intégrales singulières, Ann. Fac. Sci. Univ. Toulouse 3 (1909), 25–117.10.5802/afst.257Suche in Google Scholar

[19] özarslan, M. A.—Yilmaz Yaşar, B.: Δh-Gould-Hopper Appell polynomials, Acta Math. Sci. 41B(4) (2021), 1196–1222.10.1007/s10473-021-0411-ySuche in Google Scholar

[20] Prakash, C.—Verma, D. K.—Deo, N.: Approximation by a new sequence of operators involving Apostol-Genocchi polynomials, Math. Slovaca 71 (2021), 1179–1188.10.1515/ms-2021-0047Suche in Google Scholar

[21] Sucu, S.—İçöz, G.—Varma, S.: On some extensions of Szász operators including Boas-Buck-type polynomials, Abstr. Appl. Anal. 2012 (2012), Art. ID 680340.10.1155/2012/680340Suche in Google Scholar

[22] Sucu, S.—Varma, S.: Approximation by sequence of operators involving analytic functions, Mathematics 7 (2019), Art. No. 188.10.3390/math7020188Suche in Google Scholar

[23] Szász, O.: Generalization of Bernstein’s polynomials to the infinite interval, J. Res. Natl. Bur. Stand. 45(3) (1950), 239–245.10.6028/jres.045.024Suche in Google Scholar

[24] Szegö, G.: Orthogonal Polynomials, Amer. Math. Soc., 1975.Suche in Google Scholar

[25] Varma, S.—Sucu, S.—İçöz, G.: Generalization of Szász operators involving Brenke type polynomials, Comput. Math. Appl. 64(2) (2012), 121–127.10.1016/j.camwa.2012.01.025Suche in Google Scholar

[26] Wood, B.: Generalized Szász operators for the approximation in the complex domain, SIAM J. Appl. Math. 17 (1969), 790–801.10.1137/0117071Suche in Google Scholar

Received: 2022-02-10
Accepted: 2023-03-10
Published Online: 2023-12-18

© 2023 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 16.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2023-0111/pdf
Button zum nach oben scrollen