Home A Critical p(x)-Laplacian Steklov Type Problem with Weights
Article
Licensed
Unlicensed Requires Authentication

A Critical p(x)-Laplacian Steklov Type Problem with Weights

  • Mostafa Allaoui EMAIL logo and Omar Darhouche
Published/Copyright: December 18, 2023
Become an author with De Gruyter Brill

ABSTRACT

This paper is concerned with the existence of nontrivial weak solutions for a class of p(x)-Laplacian problem under Steklov boundary condition. The variable exponent theory of generalized Lebesgue-Sobolev spaces and the concentration-compactness principle for weighted variable exponent spaces are used for this purpose.

2020 Mathematics Subject Classification: 35J60; 35J66; 35B38

(Communicated by Giuseppe Di Fazio)


Acknowledgement

The authors wish to acknowledge the referees for several useful comments and valuable suggestions, which have helped improve the presentation.

REFERENCES

[1] Afrouzi, G. A.—Heidarkhani, S.—Shokooh, S.: Infinitely many solutions for Steklov problems associated to non-homogeneous differential operators through Orlicz-Sobolev spaces, Complex Var. Elliptic Equ. 60 (2015), 1505–1521.10.1080/17476933.2015.1031122Search in Google Scholar

[2] Allaoui, M.—El Amrouss, A. R.—Ourraoui, A.: Existence and multiplicity of solutions for a Steklov problem involving the p (x)-Laplace operator, Electron. J. Diff. Equ. 2012 (2012), Art. No. 132.Search in Google Scholar

[3] Allaoui, M.: Continuous spectrum of Steklov nonhomogeneous elliptic problem, Opuscula Math. 35 (2015), 853–866.10.7494/OpMath.2015.35.6.853Search in Google Scholar

[4] Allaoui, M.: Robin problems involving the p(x)-Laplacian, Appl. Math. Comput. 332 (2018), 457–468.10.1016/j.amc.2018.03.052Search in Google Scholar

[5] Aydin, I.—Unal, C.: Three solutions to a Steklov problem involving the weighted p(.)-laplacian, Rocky Mountain J. Math. 51 (2021), 67–76.10.1216/rmj.2021.51.67Search in Google Scholar

[6] Aydin, I.—Unal, C.: Existence and multiplicity of weak solutions for eigenvalue Robin problem with weighted p(.)-Laplacian, Ric. Mat. (2021).10.1007/s11587-021-00621-0Search in Google Scholar

[7] Ben Ali, K.: Existence results for Steklov problem involving the p(x)-Laplace operator, Complex Var. Elliptic Equ. 63 (2018), 1675–1686.10.1080/17476933.2017.1403425Search in Google Scholar

[8] Ben Ali, K.—Ghanmi, A.—Kefi, K.: On the Steklov problem involving the p(x)-Laplacian with indefinite weight, Opuscula Math. 37 (2017), 779–794.10.7494/OpMath.2017.37.6.779Search in Google Scholar

[9] Bonder, J. F.—Saintier, N.—Silva, A.: On the Sobolev trace theorem for variable exponent spaces in the critical range, Ann. Mat. Pura Appl. (4) 193 (2014), 1607–1628.10.1007/s10231-013-0346-6Search in Google Scholar

[10] Boureanu, M.—Radulescu, V.: Anisotropic Neumann problems in Sobolev spaces with variable exponent, Nonlinear Anal. 75 (2012), 4471–4482.10.1016/j.na.2011.09.033Search in Google Scholar

[11] Cammaroto, F.—Chinni, A.—Di Bella B.: Multiple solutions for a Neumann problem involving the p(x)-Laplacian, Nonlinear Anal. 71 (2009), 4486–4492.10.1016/j.na.2009.03.009Search in Google Scholar

[12] Cekic, B.—Mashiyev, R. A.: Existence and localization results for p(x)-Laplacian via topological methods, Fixed Point Theory Appl. 2010 (2010), Art. ID 120646.10.1155/2010/120646Search in Google Scholar

[13] Chammem, R.—Ghanmi, A.—Sahbani, A.: Existence and multiplicity of solutions for some Steklov problem involving p(x)-Laplacian operator, Appl. Anal. 101 (2022), 2401–2417.Search in Google Scholar

[14] Chammem, R.—Sahbani, A.: Existence and multiplicity of solutions for some Styklov problem involving (p1(x), p2(x))-Laplacian operator, Appl. Anal. 101 2022, 2401–2417.10.1080/00036811.2020.1807014Search in Google Scholar

[15] Chung, N. T.—Naghizadeh, Z.: Multiplicity of solutions for a class of fourth-order elliptic equations of p(x)-Kirchhoff type, Math. Slovaca. 71 (2021), 1441–1458.10.1515/ms-2021-0063Search in Google Scholar

[16] Deng, S. G.: Eigenvalues of the p(x)-Laplacian Steklov problem, J. Math. Anal. Appl. 339 (2008), 925–937.10.1016/j.jmaa.2007.07.028Search in Google Scholar

[17] Diening, L.—Harjulehto, P.—Hästö, P.—Růžička, M.: Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Math., vol. 2017, Springer, Heidelberg, 2010.10.1007/978-3-642-18363-8Search in Google Scholar

[18] Fan, X. L.—Shen, J. S.—Zhao, D.: Sobolev embedding theorems for spaces Wk,p(x) J. Math. Anal. Appl. 262 (2001), 749–760.10.1006/jmaa.2001.7618Search in Google Scholar

[19] Fan, X. L.—Zhao, D.: On the spaces Lp(x) and Wm,p(x), J. Math. Anal. Appl. 263 (2001), 424–446.10.1006/jmaa.2000.7617Search in Google Scholar

[20] Fan, X.L.: Global C1,α regularity for variable exponent elliptic equations in divergence form, J. Differential Equations 235 (2007), 397–417.10.1016/j.jde.2007.01.008Search in Google Scholar

[21] Fan, X.L.—Han, X.Y.: Existence and multiplicity of solutions for p(x)-Laplacian equations in N , Nonlinear Anal. 59 (2004), 173–188.10.1016/S0362-546X(04)00254-8Search in Google Scholar

[22] Fan, X. L.—Deng, S. G.: Remarks on Ricceri’s variational principle and applications to the p(x)-Laplacian equations, Nonlinear Anal. 67 (2007), 3064–3075.10.1016/j.na.2006.09.060Search in Google Scholar

[23] Hsini, M.—Irzi, N.—Kefi, K.: Nonhomogeneous p(x)-Laplacian Steklov problem with weights, Complex Var. Elliptic Equ. 65 (2020), 440–454.10.1080/17476933.2019.1597070Search in Google Scholar

[24] Rădulescu, V. D.—Repovš, D. D.: Partial Differential Equations with Variable Exponents, Variational methods and qualitative analysis. Monographs and Research Notes in Mathematics, CRC Press, Boca Raton, FL, 2015.Search in Google Scholar

[25] Repovš, D. D.—Saoudi, K.: The Nehari manifold approach for singular equations involving the p(x)-Laplace operator, Complex Var. Elliptic Equ. textbf68 (2023), 135–149.10.1080/17476933.2021.1980878Search in Google Scholar

[26] Yücedag, Z.: Existence results for Steklov problem with nonlineair boundary condition, Middle East J. Sci. 5 (2019), 146–154.10.23884/mejs.2019.5.2.06Search in Google Scholar

Received: 2022-09-09
Accepted: 2023-01-04
Published Online: 2023-12-18

© 2023 Mathematical Institute Slovak Academy of Sciences

Downloaded on 23.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ms-2023-0109/html
Scroll to top button