Home On the Attainable Set of Iterative Differential Inclusions
Article
Licensed
Unlicensed Requires Authentication

On the Attainable Set of Iterative Differential Inclusions

  • Samia Ghalia and Doria Affane EMAIL logo
Published/Copyright: December 18, 2023
Become an author with De Gruyter Brill

ABSTRACT

In this paper, we consider a first-order iterative differential inclusion. We study the existence of solutions and some topological proprieties of the attainable set, where the right hand side is an upper semi-continuous multifunction with convex values. Then, we treat the autonomous problem under assumptions that do not require the convexity of the values and that weaken the assumption on the upper semi-continuity.

2020 Mathematics Subject Classification: 34A60; 28A20; 34K35

(Communicated by Michal Fečkan)


Funding statement: Research supported by the General direction of scientific research and technological development (DGRSDT) under project PRFU No. C00L03UN180120220006.

REFERENCES

[1] Acary, V.—Bonnefon, O.—Brogliato, B.: Nonsmooth Modeling and Simulation for Switched Circuits, Springer Science and Business Media, 2010.10.1007/978-90-481-9681-4Search in Google Scholar

[2] Affane, D.—Aissous, M.—Yarou, M. F.: Almost mixed semi-continuous perturbation of Moreaus sweeping process, Evol. Equ. Control Theory 1 (2020), 27–38.10.3934/eect.2020015Search in Google Scholar

[3] Affane, D.—Aissous, M.—Yarou, M. F.: Existence results for sweeping process with almost convex perturbation, Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 61 (2018), 119–134.Search in Google Scholar

[4] Affane, D.—Azzam-Laouir, D.: Second-order differential inclusions with almost convex right-hand sides, Electron. J. Qual. Theory Differ. Equ. 34 (2011), 1–14.10.14232/ejqtde.2011.1.34Search in Google Scholar

[5] Affane, D.—Azzam-Laouir, D.: Almost convex valued perturbation to time optimal control sweeping processes, ESAIM Control Optim. Calc. Var. 23 (2017), 1–12.10.1051/cocv/2015036Search in Google Scholar

[6] Affane, D.—Boulkemh, L.: Topological properties for a perturbed first order sweeping process, Acta Univ. Sapientiae Math. 13 (2021), 1–22.10.2478/ausm-2021-0001Search in Google Scholar

[7] Affane, D.—Ghalia, S.: First-order iterative differential inclusion, Electron. J. Math. Anal. Appl. 10 (2022), 1–10.10.21608/ejmaa.2022.292037Search in Google Scholar

[8] Affane, D.—Yarou, M. F.: Unbounded perturbation for a class of variational inequalities, Discuss. Math. Differ. Incl. Control Optim. 37 (2017), 83–99.10.7151/dmdico.1189Search in Google Scholar

[9] Affane, D.—Yarou, M. F.: Perturbed first-order state dependent Moreau’s sweeping process, Int. J. Nonlinear Anal. Appl. 12 (2021), 605–615.Search in Google Scholar

[10] Aronszajn, N.: Le correspondant topologique de l’unicite dans la theorie des equations differentielles, Ann. of Math. (2) 43 (1942) 730–738.10.2307/1968963Search in Google Scholar

[11] Aubin, J. P.—Cellina, A.: Differential Inclusions: Set-Valued Maps and Viability Theory, Springer Science and Business Media, 2012.Search in Google Scholar

[12] Berinde, V.: Existence and approximation of solutions of some first order iterative differential equations, Miskolc Math. Notes 11 (2010), 13–26.10.18514/MMN.2010.256Search in Google Scholar

[13] Bounkhel, M.—Yarou, M. F.: Existence results for first and second order nonconvex sweeping processs with delay, Port. Math. 61 (2004), 207–230.Search in Google Scholar

[14] Buică, A.: Existence and continuous dependence of solutions of some functional-differential equations, Seminar on Fixed Point Theory 3 (1995), 1–14.Search in Google Scholar

[15] Castaing, C.—Hā, T. X. D.—Valadier, M.: Evolution equations governed by the sweeping process, Set-Valued Anal. 1 (1993), 109–139.10.1007/BF01027688Search in Google Scholar

[16] Castaing, C.—Ibrahim, A. G.—Yarou, M. F.: Existence problems in second order evolution inclusions: discretization and variational approach, Taiwanese J. Math. 12 (2008), 1433–1475.10.11650/twjm/1500405034Search in Google Scholar

[17] Castaing, C.—Valadier, M.: Convex analysis and measurable multifunctions. In: Lectures Notes in Math. 580, Springer-Verlag, Berlin, 1977.10.1007/BFb0087685Search in Google Scholar

[18] Cellina, A.—Ornelas, A.: Existence of solution to differential inclusion and optimal control problems in the autonomous case, SIAM J. Control Optim. 42 (2003), 260–265.10.1137/S0363012902408046Search in Google Scholar

[19] Chang, Y. K.— Nieto, J. J.: Some new existence results for fractional differential inclusions with boundary conditions, Math. Comput. Model. 49 (2009), 605–609.10.1016/j.mcm.2008.03.014Search in Google Scholar

[20] Chemetov, N.—Marques, M. D. M.: Non-convex quasi-variational differential inclusions, Set-Valued Var. Anal. 3 (2007), 209–221.10.1007/s11228-007-0045-9Search in Google Scholar

[21] Deimling, K.: Multivalued Differential Equations, De Gruyter Series in Nonlinear Analysis and Applications, Vol. 1, Walter de Gruyter and Co., Berlin, Germany, 1992.Search in Google Scholar

[22] Djebali, S.—Górniewicz, L.—Ouahab, A: Solution sets for differential equations and inclusions, De Gruyter, 2012.10.1515/9783110293562Search in Google Scholar

[23] Eder, E.: The functional differential equation x′(t) = x(x(t)),, J. Differential Equations 54 (1984), 390–400.10.1016/0022-0396(84)90150-5Search in Google Scholar

[24] Fečkan, M.: On a certain type of functional differential equations, Math. Slovaca 43 (1993), 39–43.Search in Google Scholar

[25] Fečkan, M.—Wang, J.—Pospíšil, M.: Fractional-Order Equations and Inclusions. Fract. Calc. Appl. Sci. Eng. 3, De Gruyter, 2017.10.1515/9783110522075Search in Google Scholar

[26] Fečkan, M.—Wang, J.—Zhao, H. Y.: Maximal and minimal nondecreasing bounded solutions of iterative functional differential equations, Appl. Math. Lett. 113 (2021), Art. ID 106886.10.1016/j.aml.2020.106886Search in Google Scholar

[27] Filippov, A. F.: Differential equations with multi-valued discontinuous right-hand side, Dokl. Akad. Nauk 151 (1963), 65–68.Search in Google Scholar

[28] Ge, W.—Mo, Y.: Existence of solutions to differential iterative equation, J. Beijing Inst. Technol. 6 (1997), 192–200.Search in Google Scholar

[29] Ghalia, S.—Affane. D.: Control problem governed by an iterative differential inclusion, Rend. Circ. Mat. Palermo (2) 72 (2023), 2621–2642.10.1007/s12215-022-00819-7Search in Google Scholar

[30] Kamenskii, M.—Obukhovskii, V.—Petrosyan, G.—Yao, J. C.: Boundary value problems for semi-linear differential inclusions of fractional order in a Banach space, Appl. Anal. 97 (2018), 571–591.10.1080/00036811.2016.1277583Search in Google Scholar

[31] Kneser, A.: Unteruchung und asymptotische Darstellung der integrale gewisser Differentialgleichungen bei grossen Werthen des Arguments, J. Reine Angew. Math. 116 (1896), 178–212.10.1515/crll.1896.116.178Search in Google Scholar

[32] Lauran, M.: Existence results for some differential equations with deviating argument, Filomat 25 (2011), 21–31.10.2298/FIL1102021LSearch in Google Scholar

[33] Papageorgiou, N. S.: On the attainable set of differential inclusions and control systems, J. Math. Anal. Appl. 125 (1987), 305–322.10.1016/0022-247X(87)90094-1Search in Google Scholar

[34] Peano, G.: Demonstration de lintegrabilite des equations differentielles ordinaires, Mat. Ann. 37 (1890), 182–238.10.1007/BF01200235Search in Google Scholar

[35] Pelczar, A.: On some iterative differential equations I, Zeszyty Naukowe Uniwersytetu Jagiellonskiego, Prace Matematyczne 12 (1968), 53–56.Search in Google Scholar

[36] Tolstonogov, A.: Differential inclusions in a Banach space, Springer Science and Business Media, 2012.Search in Google Scholar

[37] Wang, J.—Ibrahim, A. G.—Fečkan, M.: Nonlocal impulsive fractional differential inclusions with fractional sectorial operators on Banach spaces, Appl. Math. Comput. 257 (2015), 103–118.10.1016/j.amc.2014.04.093Search in Google Scholar

[38] Wang, J.—Ibrahim, A. G.—Fečkan, M.: Nonlocal Cauchy problems for semilinear differential inclusions with fractional order in Banach spaces, Commun. Nonlinear Sci. Numer. Simul. 27 (2015), 281–293.10.1016/j.cnsns.2015.03.009Search in Google Scholar

[39] Wazewski, T.: Systemes de commande et equations au contingent, Bull. Acad. Polon. Sci. 9 (1961), 151–155.Search in Google Scholar

[40] Wazewski, T.: Sur une condition equivalente a inequation au contingent, Bull. Acad. Polon. Sci. 9 (1961), 865–867.Search in Google Scholar

[41] Yang, D.—Zhang, W.: Solution of equivariance for iterative differential equations, Appl. Math. Lett. 17 (2004), 759–765.10.1016/j.aml.2004.06.002Search in Google Scholar

[42] Yaya, A.—Mebrate, B.: On solution to iterative differential equations, Adv. Math.: Sci. J. 10 (2021), 2053–2068.10.37418/amsj.10.4.20Search in Google Scholar

[43] Zhang, P.: Analytic solutions for iterative functional differential equations, Electron. J. Differ. Equ. 2012 (2012), 1–7.10.1186/1687-1847-2012-66Search in Google Scholar

[44] Zhang, P.—Gong, X.: Existence of solutions for iterative differential equations, Electron. J. Differ. Equ. 2014 (2014), Art. No 07.10.1186/1687-1847-2014-291Search in Google Scholar

[45] Zhou J.—Shen, J.: Positive solutions of iterative functional differential equations and application to mixed-type functional differential equations, Discrete Contin. Dyn. Syst. 27 (2022), 3605.10.3934/dcdsb.2021198Search in Google Scholar

Received: 2021-11-04
Accepted: 2023-06-11
Published Online: 2023-12-18

© 2023 Mathematical Institute Slovak Academy of Sciences

Downloaded on 24.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ms-2023-0107/html
Scroll to top button