Home The Alpha Power Muth-G Distributions and Its Applications in Survival and Reliability Analyses
Article
Licensed
Unlicensed Requires Authentication

The Alpha Power Muth-G Distributions and Its Applications in Survival and Reliability Analyses

  • Joseph Thomas Eghwerido EMAIL logo and Ikechukwu Friday Agu
Published/Copyright: December 18, 2023
Become an author with De Gruyter Brill

ABSTRACT

The generalization of the family of distributions that could provide a simple, and efficient algorithm for parameter estimation and study of the behavior of datasets from various fields has received significant interest. Such a model has enormous advantages, such as its flexible nature, and the regression form can easily be derived. In the literature, various generalized families of distributions have been introduced. Despite the merits of these distributions, they still have some limitations due to many parameters in the model. Thus, the estimation of parameters often becomes cumbersome. Therefore, this study introduced the alpha power Muth or Teissier-G family of continuous distributions with well-defined parameters, and obtained the joint progressive type-II censoring scheme and their reliability measures. Furthermore, we obtained the global and local influences of the APTG model. We used real-life and simulated data to evaluate the numerical applications of the introduced model. The results show that the alpha power Muth or Teissier-G family of distributions gave the best fits to both datasets than some existing models.

2020 Mathematics Subject Classification: Primary 60E05; 62E10; 62E15

(Communicated by Gejza Wimmer)


REFERENCES

[1] Afify, A. Z.—Yousof, H. M.—Nadarajah, S.: The beta transmuted-H family of distributions: properties and applications, Stat. Interface 10 (2017), 505–520.10.4310/SII.2017.v10.n3.a13Search in Google Scholar

[2] Alizadeh, M.—Tahir, M. H.—Cordeiro, G. M.—Mansoor, M.—Zubair, M.—Hamedani, G. G.: The Kumaraswamy Marshal-Olkin family of distributions, J. Egyptian Math. Soc. 23(3) (2015), 546–557.10.1016/j.joems.2014.12.002Search in Google Scholar

[3] Alizadeh, M.—Cordeiro, G. M.—Pinho, L. G. B.—Ghosh, I.: The Gompertz-G family of distributions, J. Stat. Theory Pract. 11(1) (2017), 179–207.10.1080/15598608.2016.1267668Search in Google Scholar

[4] Alizadeh, M.—Rasekhi, M.—Yousof, H. M.—Hamedani, G. G.: The transmuted Weibull-G family of distributions, Hacet. J. Math. Stat. 47(6) (2018), 1–20.10.15672/HJMS.2017.440Search in Google Scholar

[5] Alizadeh, M.—Emadi, M.—Doostparast, M.: A new two-parameter lifetime distribution: Properties, applications and different method of estimations, Stat. Optim. Inf. Comput. 7 (2019), 291–310.10.19139/soic.v7i2.653Search in Google Scholar

[6] Alizadeh, M.—Yousof, H. M.—Jahanshahiz, S. M. A.—Najibi, S. M.—Hamedani, G. G.: The transmuted odd log-logistic-G family of distributions, J. Stat. Manag. Syst. 23(4) (2020), 761–787.10.1080/09720510.2019.1685228Search in Google Scholar

[7] Aljarrah, M. A.—Lee, C.—Famoye, F.: On generating T-X family of distributions using quantile functions, J. Stat. Distrib. Appl. 1 (2014), Art. No. 2.10.1186/2195-5832-1-2Search in Google Scholar

[8] Alzaatreh, A.—Famoye, F.—Lee, C.: A new method for generating families of continuous distributions, Metron 71 (2013), 63–79.10.1007/s40300-013-0007-ySearch in Google Scholar

[9] Amini, M.—Mir-Mostafaee, S. M. T. K.—Ahmadi, J.: Log-gamma-generated families of distributions, Statistics 48(4) (2014), 1–20.10.1080/02331888.2012.748775Search in Google Scholar

[10] Aryal, G. R.—Yousof, H. M.: The exponentiated generalized-G poisson family of distributions, Economic Quality Control 32(1) (2017), 1–17.10.1515/eqc-2017-0004Search in Google Scholar

[11] Balakrishnan, N.—Feng, S.—Kin-Yat, L.: Exact likelihood inference for k exponential populations under joint progressive type-II censoring, Comm. Statist. Simulation Comput. 44(3) (2015), 902–923.10.1080/03610918.2013.795594Search in Google Scholar

[12] Bourguignon, B. M.—Silva, R.—Cordeiro, G. M.: The Weibull-G family of probability distributions, J. Data Sci. 12 (2014), 53–68.10.6339/JDS.201401_12(1).0004Search in Google Scholar

[13] Braga, S. A.—Cordeiro, G. M.—Ortega, E. M.—Nilton Da Cruz, J.: The odd log-logistic normal distribution: Theory and applications in analysis of experiments, J. Stat. Theory Pract. 10(2) (2016), 311–335.10.1080/15598608.2016.1141127Search in Google Scholar

[14] Cordeiro, G. M.—De Castro, M.: A new family of generalized distributions, J. Stat. Comput. Simul. 81(7) (2011), 883–898.10.1080/00949650903530745Search in Google Scholar

[15] Doostparast, M.—Ahmadi, M.—Vali-Ahmadi, J.: Bayes estimation based on joint progressive Type-II censored data under LINEX loss function, Comm. Statist. Simulation Comput. 42(8) (2013), 1865–1886.10.1080/03610918.2012.683921Search in Google Scholar

[16] Agu, F. I.—Eghwerido, J. T.—Nziku, C. K.: The alpha power Rayleigh-G family of distributions, Math. Slovaca 72(4) (2022), 1047–1062.10.1515/ms-2022-0073Search in Google Scholar

[17] Eghwerido, J. T.—Agu, F. I.: The shifted Gompertz-G family of distributions: properties, and applications, Math. Slovaca 71(5) (2021), 1291–1308.10.1515/ms-2021-0053Search in Google Scholar

[18] Eghwerido, J. T.—Oguntunde, P. E.— Agu, F. I.: The alpha power Marshall-Olkin-G family of distributions: properties, and applications, Sankhya A 85 (2023), 172–197.10.1007/s13171-020-00235-ySearch in Google Scholar

[19] Eghwerido, J. T.—Zelibe, S. C.—Efe-Eyefia, E.: The transmuted alpha power-G family of distributions, J. Stat. Manag. Syst. 24(5) (2021), 965–1002.10.1080/09720510.2020.1794528Search in Google Scholar

[20] Eghwerido, J. T.: The alpha power Teissier distribution and its applications, Afr. Stat. 16(2) (2021), 2731–2745.10.16929/as/2021.2733.181Search in Google Scholar

[21] Eghwerido, J. T.—Agu, F. I.: The alpha Power Shifted Exponential distribution: properties, and applications, Thailand Statistician 20(4) (2022), 927–841.Search in Google Scholar

[22] Eghwerido, J. T.—Nzei, L. C.—Omotoye, A. E.—Agu, F. I.: The Teissier-G family of distributions: propertiers and applications, Math. Slovaca 72(5) (2022), 1301–1318.10.1515/ms-2022-0089Search in Google Scholar

[23] Eghwerido, J. T.—Agu, F. I.: The statistical properties and applications of the alpha power Topp-Leone-G distribution, Heliyon 8 (2022), Art. ID e09775.10.1016/j.heliyon.2022.e09775Search in Google Scholar PubMed PubMed Central

[24] Eghwerido, J. T.: The Marshall-Olkin Teissier generated model for lifetime data, Journal of the Belarusian State University: Mathematics and Informatics 1 (2022), 46–65.10.33581/2520-6508-2022-1-46-65Search in Google Scholar

[25] El-Bassiouny, A. H.—Abdo, N. F.—Shahen, H. S.: Exponential Lomax distribution, Int. J. Comput. Appl. 121(13) (2015), 24–29.10.5120/21602-4713Search in Google Scholar

[26] Eliwa, M. S.—El-Morshedy, M.: Bivariate Gumbel-G family of distributions: statistical properties, bayesian and non-bayesian estimation with application, Ann. Data Sci. 6 (2019), 39–60.10.1007/s40745-018-00190-4Search in Google Scholar

[27] Famoye, F.—Lee, C.—Olumolade, O.: The Beta-Weibull distribution, J. Stat. Theory Appl. 4(2) (2005), 121–136.Search in Google Scholar

[28] Lemonte, A.—Cordeiro, G.: An extended Lomax distribution, Statistics 47 (2013), 800–816.10.1080/02331888.2011.568119Search in Google Scholar

[29] Mahdavi, A.—Kundu, D.: A new method for generating distributions with an application to exponential distribution, Comm. Statist. Theory Methods 46(13) (2017), 6543–6557.10.1080/03610926.2015.1130839Search in Google Scholar

[30] Marshall, A. W.—Olkin, I.: A new method for adding a parameter to a family of distributions with application to the exponential and Weibull families, Biometrika 84 (1997), 641–652.10.1093/biomet/84.3.641Search in Google Scholar

[31] Murthy, D. P.—Xie, M.—Jiang, R.: Weibull models, John Wiley and Sons, 2004.Search in Google Scholar

[32] National Center for Health Statistics. Health, United States, 2019: Table. Hyattsville, MD. 2021. Available from: https://www.cdc.gov/nchs/hus/contents2019.htm Table-027.Search in Google Scholar

[33] Parsi, S.—Ganjali, M.—Sanjari F. N.: Conditional maximum likelihood and interval estimation for two Weibull populations under joint type-II progressive censoring, Comm. Statist. Theory Methods 40 (2011), 2117–2135.10.1080/03610921003764175Search in Google Scholar

[34] R Core Team (2019). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.Search in Google Scholar

[35] Rasouli, A.—Balakrishnan, N.: Exact likelihood inference for two exponential populations under joint progressive type-II censoring, Comm. Statist. Theory Methods 39(12) (2010), 2172–2191.10.1080/03610920903009418Search in Google Scholar

[36] Reyad, H. M.—Alizadeh, M.—Jamal, F.—Othman, S.: The Topp Leone odd Lindley-G family of distributions: Properties and applications, J. Stat. Manag. Syst. 21(7) (2018), 1273–1297.10.1080/09720510.2018.1495157Search in Google Scholar

[37] Reyad, H. M.—Alizadeh, M.—Jamal, F.—Othman, S.—Hamedani, G. G.: The exponentiated generalized Topp Leone-G family of distributions: Properties and applications, Pakistan J. Statist. 15(1) (2019), 1–24.10.18187/pjsor.v15i1.2166Search in Google Scholar

[38] Singh, S. V.—Elgarhy, M.—Ahmad, Z.—Sharma, V. K.—Hamedani, G. G.: New class of probability distributions arising from Teissier distribution. In: Mathematical Modeling, Computational Intelligence Techniques and Renewable Energy (Sahni, M., Merig, J. M., Jha, B. K., Verma, R., eds.), Adv. Intell. Syst. Comput. 1287, Springer, 2021.10.1007/978-981-15-9953-8_5Search in Google Scholar

[39] Tahir, M. H.—Cordeiro, G. M.—Alzaatreh, A.—Mansoor, M.—Zubair, M.: The logistic-X family of distributions and its applications, Comm. Statist. Theory Methods 45(24) (2016), 7326–7348.10.1080/03610926.2014.980516Search in Google Scholar

[40] Yousof, H. M.—Afify, A. Z.—Hamedani, G. G.—Aryal, G.: The Burr-X generator of distributions for lifetime data, J. Stat. Theory Appl. 16 (2017), 288–305.10.2991/jsta.2017.16.3.2Search in Google Scholar

[41] Yousof, H. M.—Alizadeh, M.—Jahanshahiand, S. M. A.—Ramires, T. G.—Ghosh, I.—Hamedani, G. G.: The transmuted Topp-Leone-G family of distributions: theory, characterizations and applications, J. Data Sci. 15 (2017), 6723–740.Search in Google Scholar

[42] Yousof, H. M.—Afify, A. Z.—Alizadeh, M.—Nadarajah, S.—Aryal, G. R.–Hamedani, G. G.: The Marshall-Olkin generalized-G family of distributions with applications, Statistica 78(3) (2018), 273–295.Search in Google Scholar

Received: 2022-05-30
Accepted: 2023-01-18
Published Online: 2023-12-18

© 2023 Mathematical Institute Slovak Academy of Sciences

Downloaded on 25.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ms-2023-0116/html
Scroll to top button