Home Uniform Local Connectedness and Completion of Metric σ-Frames
Article
Licensed
Unlicensed Requires Authentication

Uniform Local Connectedness and Completion of Metric σ-Frames

  • Inderasan Naidoo
Published/Copyright: December 18, 2023
Become an author with De Gruyter Brill

ABSTRACT

We extend the notion of local connectedness and uniform local connectedness to the category MσFrm of metric σ-frames. We provide the construction of the uniformly locally connected reflection of a locally connected metric σ-frame. We also discuss complete metric σ-frames and show the existence of a completion for a metric σ-frame in the category MσFrm.

2020 Mathematics Subject Classification: 06D22; 18B35; 54D05; 54D35; 54E15; 54E35

(Communicated by Anatolij Dvurečenskij)


REFERENCES

[1] Baboolal, D.: Local connectedness made uniform, Appl. Categ. Structures 8 (2000), 377–390.10.1007/978-94-017-2529-3_23Search in Google Scholar

[2] Baboolal, D.: Connectedness in metric frames, Appl. Categ. Structures 13 (2005), 161–169.10.1007/s10485-004-6731-ySearch in Google Scholar

[3] Baboolal, D.—Banaschewski, B.: Compactifications and local connectedness of frames, J. Pure Appl. Algebra 70 (1991), 3–16.10.1016/0022-4049(91)90003-KSearch in Google Scholar

[4] Banaschewski, B.: The frame envelope of a σ-frame, Quaest. Math. 16 (1993), 51–60.10.1080/16073606.1993.9631714Search in Google Scholar

[5] Banaschewski, B.: Completion in pointfree topology, Lecture Notes in Math. and Applied Math., Univ. of Cape Town, SoCat 94(2) (1996).Search in Google Scholar

[6] Banaschewski, B.—Gilmour, C.: Pseudocompactness and the cozero part of a frame, Comment. Math. Univ. Carolin. 37(3) (1996), 577–587.Search in Google Scholar

[7] Banaschewski, B.—Pultr, A.: Samuel compactification and completion of uniform frames, Math. Proc. Cambridge Philos. Soc. 108 (1990), 63–78.10.1017/S030500410006895XSearch in Google Scholar

[8] Banaschewski, B.—Pultr, A.: A Stone duality for metric spaces, Can. Math. Soc. Proceedings 13 (1992), 33–42.Search in Google Scholar

[9] Banaschewski, B.—Pultr, A.: Cauchy points of uniform and nearness frames, Quaest. Math. 19 (1996), 101–127. 10.1080/16073606.1996.9631828Search in Google Scholar

[10] Banaschewski, B.—Hong, S. S.—Pultr, A.: On the completion of nearness frames, Quaest. Math. 21 (1998), 19–37.10.1080/16073606.1998.9632023Search in Google Scholar

[11] Gleason, A. M.: Universal locally connected refinements, Illinois J. Math. 7 (1963), 521–531.10.1215/ijm/1255644959Search in Google Scholar

[12] Johnstone, P. T.: Stone Spaces. Cambridge Stud. Adv. Math. 3, Camb. Univ. Press, 1982.Search in Google Scholar

[13] Naidoo, I.: Connectedness extended to σ-frames, Acta Math. Hungar. 118(4) (2008), 357–367.10.1007/s10474-007-6228-xSearch in Google Scholar

[14] Naidoo, I.: Complete nearness σ-frames, Acta Math. Hung. 121(1–2) (2008), 171–186.10.1007/s10474-008-7200-0Search in Google Scholar

[15] Naidoo, I.: Uniformly locally connected uniform σ-frames, Acta Math. Hungar. 122(4) (2009), 373–385.10.1007/s10474-008-8046-1Search in Google Scholar

[16] Naidoo, I.: On completion in the category SSNσFrm, Math. Slovaca 63(2) (2013), 201–214.10.2478/s12175-012-0093-ySearch in Google Scholar

[17] Pultr, A.: Pointless Uniformities I, Complete regularity, Comment. Math. Univ. Carolin. 25(1) (1984), 91–104.Search in Google Scholar

[18] Pultr, A.: Pointless Uniformities II, (Dia)Metrization, Comm. Math. Univ. Carolinae 25(1) (1984), 105–120.Search in Google Scholar

[19] Pultr, A.: Diameters in locales : How bad they can be, Comment. Math. Univ. Carolin. 29(4) (1988), 731–742.Search in Google Scholar

[20] Pultr, A.: Frames. Handbook of Algebra, vol. 3, M. Hazewinkel (ed.), North Holland, Amsterdam, 2003, pp. 791–857.10.1016/S1570-7954(03)80073-6Search in Google Scholar

[21] Tabatabaee, M. V.—Ebrahimi, M. M.: Metric and Complete Metric σ-Frames, Appl. Categ. Structures 11(2) (2003), 135–146.10.1023/A:1023533424445Search in Google Scholar

[22] Walters J. L.: Uniform Sigma Frames and the Cozero Part of Uniform Frames, Masters Dissertation, Univ. of Cape Town, 1990.Search in Google Scholar

[23] Walters, J. L.: Compactifications and uniformities on σ-frames, Comment. Math. Univ. Carolin. 32(1) (1991), 189–198.Search in Google Scholar

[24] Walters-Wayland, J. L.: Completeness and Nearly Fine Uniform Frames, PhD. Thesis, Univ. Catholique de Louvain, 1996.Search in Google Scholar

[25] Walters-Wayland, J.L.: A Shirota Theorem for frames, Appl. Categ. Structures 7 (1999), 271–277.10.1023/A:1008670918544Search in Google Scholar

[26] Whyburn, G.T.: A certain transformation on metric spaces, Amer. J. Math. 54 (1932), 367–376.10.2307/2371001Search in Google Scholar

Received: 2022-08-24
Accepted: 2023-01-02
Published Online: 2023-12-18

© 2023 Mathematical Institute Slovak Academy of Sciences

Downloaded on 29.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ms-2023-0100/html
Scroll to top button