Startseite New Bounds of Cyclic Jensen’s Differences via Weighted Hadamard Inequalities with Applications
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

New Bounds of Cyclic Jensen’s Differences via Weighted Hadamard Inequalities with Applications

  • Tahir Rasheed , Saad Ihsan Butt EMAIL logo , Ɖilda Pečarić und Josip Pečarić
Veröffentlicht/Copyright: 18. Dezember 2023
Veröffentlichen auch Sie bei De Gruyter Brill

ABSTRACT

We generalize cyclic Jensen’s inequality utilizing the theory of 4-convex function under the effect of introduced Green functions. We formulate result for power means and quasi means. Also we give applications in information theory by giving new estimations of generalized Csiszár divergence, Rényi-divergence, Shannon-entropy, Kullback-Leibler divergence and χ2-divergence.

2020 Mathematics Subject Classification: Primary 26A51; 26D15; 26E60; 94A17; 94A15

(Communicated by Marcus Waurick)


REFERENCES

[1] Anwar, M.—Pečarić, J.: On log-convexity for differences of mixed symmetric means, Mathematical Notes 88(6) (2010), 776–784.10.1134/S0001434610110180Suche in Google Scholar

[2] Butt, S. I.—Horváth, L.—Pečarić, Ɖ.—Pečarić, J.: Cyclic Improvements of Jensen’s Inequalities. (Cyclic inequalities in Information Theory), Monographs in Inequalities 18, Element, Zagreb, 2020.Suche in Google Scholar

[3] Butt, S. I.—Horváth, L.—Pečarić, Ɖ.—Pečarić, J.: Cyclic Improvements of Jensen’s Inequalities with Applications in Information Theory, 2020.10.18514/MMN.2020.3152Suche in Google Scholar

[4] Csiszár, I.: Information-type measures of difference of probability distributions and indirect observations, Studia Sci. Math. Hungar. 2 (1967), 299–318.Suche in Google Scholar

[5] Horváth, L.: A method to refine the discrete Jensen’s inequality for convex and mid-convex functions, Math. Comput. Mod. 54 (2011) , 2451–2459.10.1016/j.mcm.2011.05.060Suche in Google Scholar

[6] Horváth, L.: A parameter dependent refinement of the discrete Jensen’s inequality for convex and mid-convex functions, J. Inequal. Appl. 2011 (2011), Art. No. 26.10.1186/1029-242X-2011-26Suche in Google Scholar

[7] Horváth, L.—Khan, K. A.—Pečarić, J.: Refinements of results about weighted mixed symmetric means and related Cauchy means, J. Inequal. Appl. 2011 (2011), Art. No. 350973.10.1155/2011/350973Suche in Google Scholar

[8] Horváth, L.: Inequalities corresponding to the classical Jensen’s inequality, J. Math. Inequal. 3(2) (2009), 189–200.10.7153/jmi-03-19Suche in Google Scholar

[9] Horváth, L.—Khan, K. A.—Pečarić, J.: Combinatorial Improvements of Jensen’s Inequality, Monographs in Inequalities 8, Element, Zagreb, 2014.Suche in Google Scholar

[10] Horváth, L.—Pečarić, Ɖ.—Pečarić, J.: Estimations of f- and Rényi divergences by using a cyclic refinement of the Jensen’s inequality, Bull. Malays. Math. Sci. Soc. 42 (2019), 933–946.10.1007/s40840-017-0526-4Suche in Google Scholar

[11] Jakšetic, J.—Pečarić, Ɖ.—Pečarić, J.: Some properties of Zipf-Mandelbrot law and Hurwitz ζ-function, Math. Inequal. Appl. 21(2) (2018), 575–584.10.7153/mia-2018-21-42Suche in Google Scholar

[12] Mehmood, N.—Agarwal, R. P.—Butt, S. I.—Pečarić, J.: New generalizations of Popoviciu-type inequalities via new Green’s functions and Montgomery identity, J. Inequal. Appl. 2017 (2017), Art. No. 108.10.1186/s13660-017-1379-ySuche in Google Scholar PubMed PubMed Central

[13] Pečarić, J.—Peić, J.: Improvements of the Giaccardi and the Petrovic inequality and related Stolarsky type means, An. Univ. Craiova Ser. Mat. Inform. 39(1) (2012), 65–75.Suche in Google Scholar

[14] Pečarić, J.—Proschan, F.—Tong, Y. L.: Convex functions, Partial Orderings and Statistical Applications, Academic Press, New York, 1992.Suche in Google Scholar

[15] Piantadosi, S. T.: Zipf’s word frequency law in natural language: a critical review and future directions, Psychonomic Bulletin and Review 21(5) (2014), 1112–1130.10.3758/s13423-014-0585-6Suche in Google Scholar PubMed PubMed Central

[16] Rasheed, T.—Butt, S. I.—Pečarić, Ɖ.—Pečarić, J.—Akdemir, A. O.: Uniform treatment of Jensen’s inequality by Montgomery identity, J. Math. 2021 (2021), Art. ID 5564647.10.1155/2021/5564647Suche in Google Scholar

[17] Silagadze, Z. K.: Citations and the Zipf–Mandelbrot law, Complex Systems 11 (1997), 487–499.Suche in Google Scholar

[18] Wu, S.: On the weighted generalization of the Hermite-Hadamard inequality and its applications, Rocky Mountain J. Math. 39 (2009), 1741–1749.10.1216/RMJ-2009-39-5-1741Suche in Google Scholar

Received: 2022-05-02
Accepted: 2023-03-15
Published Online: 2023-12-18

© 2023 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 24.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2023-0105/html
Button zum nach oben scrollen