Startseite On Transcendental Regular Continued Fractions
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

On Transcendental Regular Continued Fractions

  • Gülcan Kekeç
Veröffentlicht/Copyright: 18. Dezember 2023
Veröffentlichen auch Sie bei De Gruyter Brill

ABSTRACT

We establish explicit constructions of real transcendental numbers that are not U-numbers with respect to Mahler’s classification by using regular continued fraction expansions of irrational real algebraic numbers.

2020 Mathematics Subject Classification: Primary 11J82; Secondary 11J70

(Communicated by István Gaál)


Funding statement: This research is supported by the Scientific and Technological Research Council of Turkey (TÜBİTAK) with project number 121F219.

Acknowledgement

The author acknowledges the referees for their valuable suggestions and comments.

REFERENCES

[1] Alniaçik, K.: On the subclasses Um in Mahler’s classification of the transcendental numbers, İstanbul Üniv. Fen Fak. Mecm. Ser. A 44 (1979), 39–82.Suche in Google Scholar

[2] Alniaçik, K.: On Um-numbers, Proc. Amer. Math. Soc. 85 (1982), 499–505.10.1090/S0002-9939-1982-0660590-XSuche in Google Scholar

[3] Baker, A.: On Mahler’s classification of transcendental numbers, Acta Math. 111 (1964), 97–120.10.1007/BF02391010Suche in Google Scholar

[4] Bell, J.—Bugeaud, Y.: Mahler’s and Koksma’s classifications in fields of power series, Nagoya Math. J. 246 (2022), 355–371.10.1017/nmj.2021.5Suche in Google Scholar

[5] Bugeaud, Y.: Approximation by Algebraic Numbers. Cambridge Tracts in Mathematics 160, Cambridge University Press, Cambridge, 2004.10.1017/CBO9780511542886Suche in Google Scholar

[6] Bugeaud, Y.—Kekeç, G.: On Mahler’s classification of p-adic numbers, Bull. Aust. Math. Soc. 98 (2018), 203–211.10.1017/S0004972718000515Suche in Google Scholar

[7] Bugeaud, Y.—Kekeç, G.: On Mahler’s p-adic S-, T-, and U-numbers, An. Ştiinţ. Univ. Ovidius Constanţa Ser. Mat. 28 (2020), 81–94.10.2478/auom-2020-0005Suche in Google Scholar

[8] Bundschuh, P.: Transzendenzmasse in Körpern formaler Laurentreihen, J. Reine Angew. Math. 299/300 (1978), 411–432.10.1515/crll.1978.299-300.411Suche in Google Scholar

[9] Can, B.—Kekeç, G.: On transcendental continued fractions in fields of formal power series over finite fields, Bull. Aust. Math. Soc. 105 (2022), 392–403.10.1017/S0004972721000800Suche in Google Scholar

[10] Kekeç, G.: On Mahler’s S-numbers, T-numbers, and U-numbers, Hacet. J. Math. Stat. 49 (2020), 45–55.10.2307/j.ctv15d7zkw.38Suche in Google Scholar

[11] Kekeç, G.: U-numbers in fields of formal power series over finite fields, Bull. Aust. Math. Soc. 101 (2020), 218–225.10.1017/S0004972719000832Suche in Google Scholar

[12] Kekeç, G.: On transcendental formal power series over finite fields, Bull. Math. Soc. Sci. Math. Roumanie 63(111) (2020), 349–357.Suche in Google Scholar

[13] Kekeç, G.: On Mahler’s classification of formal power series over a finite field, Math. Slovaca 72 (2022), 265–273.10.1515/ms-2022-0017Suche in Google Scholar

[14] Leveque, W. J.: On Mahler’s U-numbers, J. London Math. Soc. 28 (1953), 220–229.10.1112/jlms/s1-28.2.220Suche in Google Scholar

[15] Leveque, W. J.: Topics in Number Theory Volume II, Addison-Wesley Publishing, 1956.Suche in Google Scholar

[16] Mahler, K.: Zur Approximation der Exponentialfunktion und des Logarithmus I, II, J. Reine Angew. Math. 166 (1932), 118–150.10.1515/crll.1932.166.137Suche in Google Scholar

[17] Mahler, K.: Über eine Klasseneinteilung der p-adischen Zahlen, Mathematica (Leiden) 3 (1935), 177–185.Suche in Google Scholar

[18] Ooto, T.: The existence of T-numbers in positive characteristic, Acta Arith. 189 (2019), 179–189.10.4064/aa180325-24-8Suche in Google Scholar

[19] Oryan, M. H.: Über die Unterklassen Um der Mahlerschen Klasseneinteilung der transzendenten formalen Laurentreihen, İstanbul Üniv. Fen Fak. Mecm. Ser. A 45 (1980), 43–63.Suche in Google Scholar

[20] Oryan, M. H.: On power series and Mahler’s U-numbers, Math. Scand. 65 (1989), 143–151.10.7146/math.scand.a-12273Suche in Google Scholar

[21] Oryan, M. H.: On power series and Mahler’s U-numbers, İstanbul Üniv. Fen Fak. Mecm. Ser. A 47 (1990), 117–125.Suche in Google Scholar

[22] Roth, K. F.: Rational approximations to algebraic numbers, Mathematika 2 (1955), 1–20; corrigendum, 168.10.1112/S0025579300000644Suche in Google Scholar

[23] Schlickewei, H. P.: p-adic T-numbers do exist, Acta Arith. 39 (1981), 181–191.10.4064/aa-39-2-181-191Suche in Google Scholar

[24] Schmidt, W. M.: T-numbers do exist. In: Symposia Mathematica Vol. IV (INDAM, Rome, 1968/1969), Academic Press, London, 1970, 3–26.Suche in Google Scholar

[25] Sprindžuk, V. G.: Mahler’s Problem in Metric Number Theory. Transl. Math. Monogr. 25, American Mathematical Society, Providence, R.I., 1969.Suche in Google Scholar

[26] Zeren, B. M.: Über eine Klasse von verallgemeinerten Lückenreihen, deren Werte für algebraische Argumente transzendent, aber keine U-Zahlen sind I, İstanbul Üniv. Fen Fak. Mat. Derg. 50 (1991), 79–99.Suche in Google Scholar

[27] Zeren, B. M.: Über eine Klasse von verallgemeinerten Lückenreihen, deren Werte für algebraische Argumente transzendent, aber keine U-Zahlen sind III, İstanbul Üniv. Fen Fak. Mat. Derg. 50 (1991), 147–158.Suche in Google Scholar

Received: 2022-05-19
Accepted: 2023-02-28
Published Online: 2023-12-18

© 2023 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 25.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2023-0101/html
Button zum nach oben scrollen