Startseite Mathematik Euler classes of vector bundles over manifolds
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Euler classes of vector bundles over manifolds

  • Aniruddha C. Naolekar EMAIL logo
Veröffentlicht/Copyright: 29. Januar 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Let 𝓔k denote the set of diffeomorphism classes of closed connected smooth k-manifolds X with the property that for any oriented vector bundle α over X, the Euler class e(α) = 0. We show that if X ∈ 𝓔2n+1 is orientable, then X is a rational homology sphere and π1(X) is perfect. We also show that 𝓔8 = ∅ and derive additional cohomlogical restrictions on orientable manifolds in 𝓔k.

MSC 2010: Primary 57R20
  1. (Communicated by JĂșlius KorbaĆĄ)

Acknowledgement

We wish to thank Daniel Ruberman and Parameswaran Sankaran for helpful discussions. We wish to acknowledge the detailed comments of the anonymous referee which has resulted in an improved presentation. We are ever indebted to Ganu for his infinite patience and kindness.

References

[1] Bredon, G. E.—Kosinski, A.: Vector fields on π-manifolds, Ann. of Math. 84(1) (1966), 85–90.10.2307/1970531Suche in Google Scholar

[2] Čadek, M.—VanĆŸura, J.: On oriented vector bundles over CW-complexes of dimension 6 and 7, Comment. Math. Univ. Carolin. 33(4) (1992), 727–736.Suche in Google Scholar

[3] Guijarro, L.—Schick, T.—Walschap, G.: Bundles with spherical Euler class, Pacific J. Math. 27(2) (2002), 377–392.10.2140/pjm.2002.207.377Suche in Google Scholar

[4] Hatcher, A.: Algebraic Topology, https://pi.math.cornell.edu/hatcher/AT/AT.pdfSuche in Google Scholar

[5] Husemoller, D.: Fibre Bundles, Springer-Verlag, New York 1966.10.1007/978-1-4757-4008-0Suche in Google Scholar

[6] Kervaire, M. A.: Smooth homology spheres and their fundamental groups, Trans. Amer. Math. Soc. 144 (1969), 67–7210.1090/S0002-9947-1969-0253347-3Suche in Google Scholar

[7] Mosher, R. E.—Tangora, M. C.: Cohomology Operations and Applications in Homotopy Theory, Harper and Row, New York, 1968.Suche in Google Scholar

[8] Naolekar, A. C.—Subhash, B.—Thakur, A. S.: On trivialities of Euler classes of oriented bundles over manifolds, Homology Homotopy and Appl. 22(1) (2020), 215–232.10.4310/HHA.2020.v22.n1.a13Suche in Google Scholar

[9] Ruberman, D.: Null-homotopic embedded spheres of codimension one, Tight and Taut submanifolds, MSRI Publications, vol. 32, 1997, pp. 229–232.Suche in Google Scholar

[10] Thomas, E.: Characteristic classes and differentiable manifolds, C.I.M.E. Summer Sch. 41, Springer, Heidelberg, 2010, pp. 113–187.10.1007/978-3-642-11048-1_4Suche in Google Scholar

Received: 2020-01-13
Accepted: 2020-04-28
Published Online: 2021-01-29
Published in Print: 2021-02-23

© 2021 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 16.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2017-0461/html
Button zum nach oben scrollen