Home Mathematics New fractional order discrete Grüss type inequality
Article
Licensed
Unlicensed Requires Authentication

New fractional order discrete Grüss type inequality

  • Serkan Asliyüce EMAIL logo and A. Feza Güvenilir
Published/Copyright: January 29, 2021
Become an author with De Gruyter Brill

Abstract

The aim of this study is to establish new discrete Grüss type inequality using fractional order h-sum and h-difference operators that generalize the fractional sum and difference operators.

References

[1] Adjabi, Y. Jarad, F. Abdeljawad, T.: On generalized fractional operators and a Gronwall type inequality with applications Filomat 31(17) (2017), 5457–5473.10.2298/FIL1717457ASearch in Google Scholar

[2] Akin, E. Asliyüce, S. Güvenilir, A. F. Kaymakçalan, B.: Discrete Grüss type inequality on fractional calculus J. Inequal. Appl. 2015 (2015), Art. ID 174.10.1186/s13660-015-0688-2Search in Google Scholar

[3] Anastassiou, G. A.: Nabla fractional calculus on time scales and inequalities J. Concr. Appl. Math. 11(1) (2013), 96–111.10.1007/978-3-642-17098-0_43Search in Google Scholar

[4] Andrić, M. Pečarić, J. Perić, I.: A multiple Opial type inequality for the Riemann-Liouville fractional derivatives J. Math. Inequal. 7(1) (2013), 139–150.10.7153/jmi-07-13Search in Google Scholar

[5] Asli yüce, S. Güvenilir, A. F.: Fractional Jensen's Inequality Palest. J. Math. 7(2) (2018), 554–558.Search in Google Scholar

[6] Atici, F. M. Eloe, P. W.: A transform method in discrete fractional calculus Int. J. Difference Equ. 2(2) (2007), 165–176.Search in Google Scholar

[7] Atici, F. M. Eloe, P. W.: Fractional q-calculus on a time scale J. Nonlinear Math. Phys. 14(3) (2007), 333–344.10.2991/jnmp.2007.14.3.4Search in Google Scholar

[8] Atici, F. M. Eloe, P. W.: Discrete fractional calculus with the nabla operator Electron. J. Qual. Theory Differ. Equ. Special Edition I (3) (2009), 12 pp.10.14232/ejqtde.2009.4.3Search in Google Scholar

[9] Baleanu, D. Purohit, S. D. Uçar, F.: On Grüss type integral inequality involving the Saigo's fractional integral operators J. Comput. Anal. Appl. 19(3) (2015), 480–489.Search in Google Scholar

[10] Baleanu, D. Diethelm, K. Scalas, E. Trujillo, J. J.: Fractional Calculus. Models and Numerical Methods 2nd ed., Series on Complexity, Nonlinearity and Chaos 5, World Scientific Publishing Co. Pte. Ltd., Hackensack, 2017.10.1142/10044Search in Google Scholar

[11] Bastos, N. R. O. Ferreira, R. A. C. Torres, D. F. M.: Discrete-time fractional variational problems Signal Processing 91 (2011), 513–524.10.1016/j.sigpro.2010.05.001Search in Google Scholar

[12] Bastos, N. R. O. Mozyrska, D. Torres, D. F. M.: Fractional derivatives and integrals on time scales via the inverse generalized Laplace transform Int. J. Math. Comput. 11 (2011), 1–9.Search in Google Scholar

[13] Biernacki, M. Pidek, H. Ryll-Nardzewski, C.: Sur une inégalité entre des intégrales définies Ann. Univ. Mariae Curie-Skłodowska. Sect. A. 4 (1950), 1–4 (in French).Search in Google Scholar

[14] Dahmani, Z. Tabharit, L. Taf, S.: New generalisations of Gruss inequality using Riemann-Liouville fractional integrals Bull. Math. Anal. Appl. 2(3) (2010), 93–99.Search in Google Scholar

[15] Dragomir, S. S. Fedotov, I. A.: An inequality of Grüss' type for Riemann-Stieltjes integral and applications for special means Tamkang J. Math. 29(4) (1998), 287–292.10.5556/j.tkjm.29.1998.4257Search in Google Scholar

[16] Dragomir, S. S.: A generalization of Grüss's inequality in inner product spaces and applications J. Math. Anal. Appl. 237(1) (1999), 74–82.10.1006/jmaa.1999.6452Search in Google Scholar

[17] Dragomir, S. S.: Some integral inequalities of Grüss type Indian J. Pure Appl. Math. 31(4) (2000), 397–415.10.1007/s13398-019-00712-6Search in Google Scholar

[18] Dragomir, S. S.: Operator Inequalities of the Jensen, Čebyšev and Grüss type. Springer Briefs Math., Springer, New York, 2012.10.1007/978-1-4614-1521-3Search in Google Scholar

[19] Dyda, B.: A fractional order Hardy inequality Illinois J. Math. 48(2) (2004), 575–588.10.1215/ijm/1258138400Search in Google Scholar

[20] Ferreira, R. A. C. Torres, D. F. M.: Fractional h-difference equations arising from the calculus of variations Appl. Anal. Discrete Math. 5(1) (2011), 110–121.10.2298/AADM110131002FSearch in Google Scholar

[21] Ferreira, R. A. C.: A discrete fractional Gronwall inequality Proc. Amer. Math. Soc. 140(5) (2012), 1605–1612.10.1090/S0002-9939-2012-11533-3Search in Google Scholar

[22] Goodrich, C. Peterson, A. C.: Discrete Fractional Calculus Springer, 2015.10.1007/978-3-319-25562-0Search in Google Scholar

[23] Grüss, G.: über das Maximum des absoluten Betrages von1babaf(x)g(x)dx1ba2baf(x)dxbag(x)dx Math. Z. 39(1) (1935), 215–226 (in German).10.1007/BF01201355Search in Google Scholar

[24] Güvenilir, A. F. Kaymakçalan, B. Peterson, A. C. Taş, K.: Nabla discrete fractional Grüss type inequality J. Inequal. Appl. 2014 (2014), Art. ID 86, 9 pp.10.1186/1029-242X-2014-86Search in Google Scholar

[25] Holm, M.: Sum and difference compositions in discrete fractional calculus Cubo 13(3) (2011), 153–184.10.4067/S0719-06462011000300009Search in Google Scholar

[26] Mercer, A. McD.: An improvement of the Grüss inequality JIPAM. J. Inequal. Pure Appl. Math. 6(4) (2005), Art. ID 93, 4 pp.Search in Google Scholar

[27] Mishra, A. M. Baleanu, D. Tchier, F. Purohit, S. D.: Certain results comprising the weighted Chebyshev function using pathway fractional integrals Mathematics 7(10) (2019), Art. ID 896.10.3390/math7100896Search in Google Scholar

[28] Mitrinović, D. S. Pečarić, J. E. Fink, A. M.: Classical and New Inequalities in Analysis. Math. Appl. (East European Series) 61, Kluwer Academic Publishers Group, Dordrecht, 1993.10.1007/978-94-017-1043-5Search in Google Scholar

[29] Mozyrska, D. Girejko, E.: Overview of fractional h-difference operators. In: Advances in harmonic analysis and operator theory, Oper. Theory Adv. Appl. 229, Birkhäuser/Springer Basel AG, Basel, 2013, pp. 253–268,10.1007/978-3-0348-0516-2_14Search in Google Scholar

[30] Nwaeze, E. R. Torres, D. F. M.: Chain rules and inequalities for the BHT fractional calculus on arbitrary time scales Arab. J. Math. 6(1) (2017), 13–20.10.1007/s40065-016-0160-2Search in Google Scholar

[31] Pachpatte, B. G.: Inequalities for Differential and Integral Equations. Math. Sci. Eng. 197, Academic Press, San Diego, 1998.Search in Google Scholar

[32] Pachpatte, B. G.: On Grüss type inequalities for double integral J. Math. Anal. Appl. 267(2) (2002), 454–459.10.1006/jmaa.2001.7762Search in Google Scholar

[33] Podlubny, I.: Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of their Solution and Some of their Applications. Math. Sci. Eng. 198, Academic Press, Inc., San Diego, 1999.Search in Google Scholar

[34] Renaud, P. F.: A matrix formulation of Grüss inequality Linear Algebra Appl. 335 (2001), 95–100.10.1016/S0024-3795(01)00278-6Search in Google Scholar

[35] Wang, G. Agarwal, P. Baleanu, D.: Certain new Grüss type inequalities involving Saigo fractional q-integral operator J. Comput. Anal. Appl. 19(5) (2015), 862–873.Search in Google Scholar

Received: 2019-09-18
Accepted: 2020-06-09
Published Online: 2021-01-29
Published in Print: 2021-02-23

© 2021 Mathematical Institute Slovak Academy of Sciences

Downloaded on 15.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ms-2017-0451/html
Scroll to top button