Abstract
The aim of this study is to establish new discrete Grüss type inequality using fractional order h-sum and h-difference operators that generalize the fractional sum and difference operators.
References
[1] Adjabi, Y. Jarad, F. Abdeljawad, T.: On generalized fractional operators and a Gronwall type inequality with applications Filomat 31(17) (2017), 5457–5473.10.2298/FIL1717457ASuche in Google Scholar
[2] Akin, E. Asliyüce, S. Güvenilir, A. F. Kaymakçalan, B.: Discrete Grüss type inequality on fractional calculus J. Inequal. Appl. 2015 (2015), Art. ID 174.10.1186/s13660-015-0688-2Suche in Google Scholar
[3] Anastassiou, G. A.: Nabla fractional calculus on time scales and inequalities J. Concr. Appl. Math. 11(1) (2013), 96–111.10.1007/978-3-642-17098-0_43Suche in Google Scholar
[4] Andrić, M. Pečarić, J. Perić, I.: A multiple Opial type inequality for the Riemann-Liouville fractional derivatives J. Math. Inequal. 7(1) (2013), 139–150.10.7153/jmi-07-13Suche in Google Scholar
[5] Asli yüce, S. Güvenilir, A. F.: Fractional Jensen's Inequality Palest. J. Math. 7(2) (2018), 554–558.Suche in Google Scholar
[6] Atici, F. M. Eloe, P. W.: A transform method in discrete fractional calculus Int. J. Difference Equ. 2(2) (2007), 165–176.Suche in Google Scholar
[7] Atici, F. M. Eloe, P. W.: Fractional q-calculus on a time scale J. Nonlinear Math. Phys. 14(3) (2007), 333–344.10.2991/jnmp.2007.14.3.4Suche in Google Scholar
[8] Atici, F. M. Eloe, P. W.: Discrete fractional calculus with the nabla operator Electron. J. Qual. Theory Differ. Equ. Special Edition I (3) (2009), 12 pp.10.14232/ejqtde.2009.4.3Suche in Google Scholar
[9] Baleanu, D. Purohit, S. D. Uçar, F.: On Grüss type integral inequality involving the Saigo's fractional integral operators J. Comput. Anal. Appl. 19(3) (2015), 480–489.Suche in Google Scholar
[10] Baleanu, D. Diethelm, K. Scalas, E. Trujillo, J. J.: Fractional Calculus. Models and Numerical Methods 2nd ed., Series on Complexity, Nonlinearity and Chaos 5, World Scientific Publishing Co. Pte. Ltd., Hackensack, 2017.10.1142/10044Suche in Google Scholar
[11] Bastos, N. R. O. Ferreira, R. A. C. Torres, D. F. M.: Discrete-time fractional variational problems Signal Processing 91 (2011), 513–524.10.1016/j.sigpro.2010.05.001Suche in Google Scholar
[12] Bastos, N. R. O. Mozyrska, D. Torres, D. F. M.: Fractional derivatives and integrals on time scales via the inverse generalized Laplace transform Int. J. Math. Comput. 11 (2011), 1–9.Suche in Google Scholar
[13] Biernacki, M. Pidek, H. Ryll-Nardzewski, C.: Sur une inégalité entre des intégrales définies Ann. Univ. Mariae Curie-Skłodowska. Sect. A. 4 (1950), 1–4 (in French).Suche in Google Scholar
[14] Dahmani, Z. Tabharit, L. Taf, S.: New generalisations of Gruss inequality using Riemann-Liouville fractional integrals Bull. Math. Anal. Appl. 2(3) (2010), 93–99.Suche in Google Scholar
[15] Dragomir, S. S. Fedotov, I. A.: An inequality of Grüss' type for Riemann-Stieltjes integral and applications for special means Tamkang J. Math. 29(4) (1998), 287–292.10.5556/j.tkjm.29.1998.4257Suche in Google Scholar
[16] Dragomir, S. S.: A generalization of Grüss's inequality in inner product spaces and applications J. Math. Anal. Appl. 237(1) (1999), 74–82.10.1006/jmaa.1999.6452Suche in Google Scholar
[17] Dragomir, S. S.: Some integral inequalities of Grüss type Indian J. Pure Appl. Math. 31(4) (2000), 397–415.10.1007/s13398-019-00712-6Suche in Google Scholar
[18] Dragomir, S. S.: Operator Inequalities of the Jensen, Čebyšev and Grüss type. Springer Briefs Math., Springer, New York, 2012.10.1007/978-1-4614-1521-3Suche in Google Scholar
[19] Dyda, B.: A fractional order Hardy inequality Illinois J. Math. 48(2) (2004), 575–588.10.1215/ijm/1258138400Suche in Google Scholar
[20] Ferreira, R. A. C. Torres, D. F. M.: Fractional h-difference equations arising from the calculus of variations Appl. Anal. Discrete Math. 5(1) (2011), 110–121.10.2298/AADM110131002FSuche in Google Scholar
[21] Ferreira, R. A. C.: A discrete fractional Gronwall inequality Proc. Amer. Math. Soc. 140(5) (2012), 1605–1612.10.1090/S0002-9939-2012-11533-3Suche in Google Scholar
[22] Goodrich, C. Peterson, A. C.: Discrete Fractional Calculus Springer, 2015.10.1007/978-3-319-25562-0Suche in Google Scholar
[23] Grüss, G.: über das Maximum des absoluten Betrages von
[24] Güvenilir, A. F. Kaymakçalan, B. Peterson, A. C. Taş, K.: Nabla discrete fractional Grüss type inequality J. Inequal. Appl. 2014 (2014), Art. ID 86, 9 pp.10.1186/1029-242X-2014-86Suche in Google Scholar
[25] Holm, M.: Sum and difference compositions in discrete fractional calculus Cubo 13(3) (2011), 153–184.10.4067/S0719-06462011000300009Suche in Google Scholar
[26] Mercer, A. McD.: An improvement of the Grüss inequality JIPAM. J. Inequal. Pure Appl. Math. 6(4) (2005), Art. ID 93, 4 pp.Suche in Google Scholar
[27] Mishra, A. M. Baleanu, D. Tchier, F. Purohit, S. D.: Certain results comprising the weighted Chebyshev function using pathway fractional integrals Mathematics 7(10) (2019), Art. ID 896.10.3390/math7100896Suche in Google Scholar
[28] Mitrinović, D. S. Pečarić, J. E. Fink, A. M.: Classical and New Inequalities in Analysis. Math. Appl. (East European Series) 61, Kluwer Academic Publishers Group, Dordrecht, 1993.10.1007/978-94-017-1043-5Suche in Google Scholar
[29] Mozyrska, D. Girejko, E.: Overview of fractional h-difference operators. In: Advances in harmonic analysis and operator theory, Oper. Theory Adv. Appl. 229, Birkhäuser/Springer Basel AG, Basel, 2013, pp. 253–268,10.1007/978-3-0348-0516-2_14Suche in Google Scholar
[30] Nwaeze, E. R. Torres, D. F. M.: Chain rules and inequalities for the BHT fractional calculus on arbitrary time scales Arab. J. Math. 6(1) (2017), 13–20.10.1007/s40065-016-0160-2Suche in Google Scholar
[31] Pachpatte, B. G.: Inequalities for Differential and Integral Equations. Math. Sci. Eng. 197, Academic Press, San Diego, 1998.Suche in Google Scholar
[32] Pachpatte, B. G.: On Grüss type inequalities for double integral J. Math. Anal. Appl. 267(2) (2002), 454–459.10.1006/jmaa.2001.7762Suche in Google Scholar
[33] Podlubny, I.: Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of their Solution and Some of their Applications. Math. Sci. Eng. 198, Academic Press, Inc., San Diego, 1999.Suche in Google Scholar
[34] Renaud, P. F.: A matrix formulation of Grüss inequality Linear Algebra Appl. 335 (2001), 95–100.10.1016/S0024-3795(01)00278-6Suche in Google Scholar
[35] Wang, G. Agarwal, P. Baleanu, D.: Certain new Grüss type inequalities involving Saigo fractional q-integral operator J. Comput. Anal. Appl. 19(5) (2015), 862–873.Suche in Google Scholar
© 2021 Mathematical Institute Slovak Academy of Sciences
Artikel in diesem Heft
- Regular papers
- Prof. RNDr. Ing. Lubomír Kubáček, DrSc., Dr.h.c. –Nonagenarian
- Doc. RNDr. Roman Frič, DrSc. passed away
- Outer and inner approximations in quantum spaces
- Linear derivations on Banach *-algebras
- New fractional order discrete Grüss type inequality
- Exponential trigonometric convex functions and Hermite-Hadamard type inequalities
- Generalized Minkowski type inequality for pseudo-integral
- Study of the Q-spiral-like functions of complex order
- Radius of starlikeness of certain analytic functions
- Successive approximations for a differential equation in a Banach space via Constantin condition
- Approximation of the multi-m-Jensen-quadratic mappings and a fixed point approach
- Oscillation and asymptotic behavior of a higher-order neutral delay difference equation with variable delays under Δm
- Sequence selection properties in Cp(X) with the double ideals
- On the paranormed Nörlund difference sequence space of fractional order and geometric properties
- On certain Diophantine equations concerning the area of right triangles
- Weighted projective Ricci curvature in Finsler geometry
- Euler classes of vector bundles over manifolds
- A new generalized Lindley-Weibull class of distributions: Theory, properties and applications
- Dynamical behaviors of a prey-predator model with foraging arena scheme in polluted environments
- The (α, β)-ramification invariants of a number field
Artikel in diesem Heft
- Regular papers
- Prof. RNDr. Ing. Lubomír Kubáček, DrSc., Dr.h.c. –Nonagenarian
- Doc. RNDr. Roman Frič, DrSc. passed away
- Outer and inner approximations in quantum spaces
- Linear derivations on Banach *-algebras
- New fractional order discrete Grüss type inequality
- Exponential trigonometric convex functions and Hermite-Hadamard type inequalities
- Generalized Minkowski type inequality for pseudo-integral
- Study of the Q-spiral-like functions of complex order
- Radius of starlikeness of certain analytic functions
- Successive approximations for a differential equation in a Banach space via Constantin condition
- Approximation of the multi-m-Jensen-quadratic mappings and a fixed point approach
- Oscillation and asymptotic behavior of a higher-order neutral delay difference equation with variable delays under Δm
- Sequence selection properties in Cp(X) with the double ideals
- On the paranormed Nörlund difference sequence space of fractional order and geometric properties
- On certain Diophantine equations concerning the area of right triangles
- Weighted projective Ricci curvature in Finsler geometry
- Euler classes of vector bundles over manifolds
- A new generalized Lindley-Weibull class of distributions: Theory, properties and applications
- Dynamical behaviors of a prey-predator model with foraging arena scheme in polluted environments
- The (α, β)-ramification invariants of a number field