Home Sequence selection properties in Cp(X) with the double ideals
Article
Licensed
Unlicensed Requires Authentication

Sequence selection properties in Cp(X) with the double ideals

  • Sumit Singh EMAIL logo , Brij K. Tyagi and Manoj Bhardwaj
Published/Copyright: January 29, 2021
Become an author with De Gruyter Brill

Abstract

Recently Bukovský, Das and Šupina [Ideal quasi-normal convergence and related notions, Colloq. Math. 146 (2017), 265–281] started the study of sequence selection properties (𝓘, 𝓙-α1) and (𝓘, 𝓙-α4) of Cp(X) using the double ideals, where 𝓘 and 𝓙 are the proper admissible ideals of ω, which are motivated by Arkhangeľskii local αi-properties [The frequency spectrum of a topological space and the classification of spaces, Dokl. Akad. Nauk SSSR 13 (1972), 1185–1189]. In this paper, we obtain some characterizations of (𝓘, 𝓙-α1) and (𝓘, 𝓙-α4) properties of Cp(X) in the terms of covering properties and selection principles. Under certain conditions on ideals 𝓘 and 𝓙, we identify the minimal cardinalities of a space X for which Cp(X) does not have (𝓘, 𝓙-α1) and (𝓘, 𝓙-α4) properties.

  1. (Communicated by Ľubica Holá)

References

[1] Arkhangeľskii, A. V.: The frequency spectrum of a topological space and the classification of spaces, Dokl. Akad. Nauk SSSR 13 (1972), 1185–1189.Search in Google Scholar

[2] Balcerzak, M.—Dems, K.—Komisarski, A.: Statistical convergence and ideal convergence for sequences of functions, J. Math. Anal. Appl. 328 (2007), 715–729.10.1016/j.jmaa.2006.05.040Search in Google Scholar

[3] Bukovský, L.—Das, P.—Šupina, J.: Ideal quasi-normal convergence and related notions, Colloq. Math. 146 (2017), 265–281.10.4064/cm6520-3-2016Search in Google Scholar

[4] Bukovský, L.—Haleš, J.: QN-spaces, wQN-spaces and covering properties, Topology Appl. 154 (2007), 848–858.10.1016/j.topol.2006.09.008Search in Google Scholar

[5] Bourbaki, N.: Topologie Générale, Hermann, Paris 1940.Search in Google Scholar

[6] Cartan H.: Théorie des filtres, C. R. Acad. Sci. Pariss 205 (1937), 595–598.Search in Google Scholar

[7] Cartan, H.: Filtres et ultrafiltres, C. R. Acad. Sci. Paris 205 (1937), 777–779.Search in Google Scholar

[8] Chandra, D.: Some remarks on sequence selection properties using ideals, Mat. Vesnik 68(1) (2016), 39–44.Search in Google Scholar

[9] Das, P.: Certain types of open covers and selection principles using ideals, Houston J. Math. 39(2) (2013), 637–650.Search in Google Scholar

[10] Das, P.—Chandra, D.: Spaces not distinguishing pointwise and 𝓘-quasinormal convergence of real functions, Comment. Math. Univ. Carolin. 54 (2013), 83–96.Search in Google Scholar

[11] Das, P.—Chandra, D.—Samanta, U.: On certain variations 𝓘-Hurewicz property, Topology Appl. 241 (2018), 363–376.10.1016/j.topol.2018.03.027Search in Google Scholar

[12] Engelking, R.: General Topology, PWN, Warszawa, 1977.Search in Google Scholar

[13] Farkas, B.—Soukup, L.: More on cardinal invariants of analytic P-ideals, Comment. Math. Univ. Carolin. 50(2) (2009), 281–295.Search in Google Scholar

[14] Filipów, R.—Staniszewski, M.: On ideal equal convergence, Cent. Eur. J. Math. 12 (2014), 896–910.10.2478/s11533-013-0388-4Search in Google Scholar

[15] Filipów, R.—Staniszewski, M.: Pointwise versus equal (quasi-normal) convergence via ideals, J. Math. Anal. Appl. 422 (2015), 995–1006.10.1016/j.jmaa.2014.09.004Search in Google Scholar

[16] Gerlits, J.—Nagy, Zs.: Some properties ofC(X), I, Topology. Appl. 14 (1982), 151–161.10.1016/0166-8641(82)90065-7Search in Google Scholar

[17] Just, W.—Miller, A. W.—Scheepers, M.—Szeptycki, P. J.: The combinatorics of open covers (II), Topol. Appl. 73 (1996), 241–266.10.1016/S0166-8641(96)00075-2Search in Google Scholar

[18] Kostyrko, P.—Šalát, T.—Wilczyński, W.: 𝓘-convergence, Real Anal. Exchange 26 (2000/2001), 669–685.10.2307/44154069Search in Google Scholar

[19] Scheepers, M.: Sequential convergence inCp(X) and a covering property, East-West J. Math. 1(2) (1999), 207–214.Search in Google Scholar

[20] Singh, S.—Tyagi, B. K.—Bhardwaj, M.: An ideal version of star-C-Hurewicz covering property, Filomat 33(19) (2019), 6385–6393.10.2298/FIL1919385SSearch in Google Scholar

[21] Šottová, V.—Šupina, J.: PrincipleS1(𝓟,𝓡): ideals and functions, Topology Appl. 258 (2019), 282–304.10.1016/j.topol.2019.02.060Search in Google Scholar

[22] Šupina, J.: Ideal QN-spaces, J. Math. Anal. Appl. 435 (2016), 477–491.10.1016/j.jmaa.2015.10.041Search in Google Scholar

[23] Tyagi, B. K.—Singh, S.—Bhardwaj, M.: Ideal analogues of some variants of Hurewicz property, Filomat 33(9) (2019), 2725–2734.10.2298/FIL1909725TSearch in Google Scholar

Received: 2019-10-07
Accepted: 2020-06-25
Published Online: 2021-01-29
Published in Print: 2021-02-23

© 2021 Mathematical Institute Slovak Academy of Sciences

Downloaded on 10.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ms-2017-0458/html
Scroll to top button