Home The (α, β)-ramification invariants of a number field
Article
Licensed
Unlicensed Requires Authentication

The (α, β)-ramification invariants of a number field

  • Guillermo Mantilla-Soler EMAIL logo
Published/Copyright: January 29, 2021
Become an author with De Gruyter Brill

Abstract

Let L be a number field. For a given prime p, we define integers αpL and βpL with some interesting arithmetic properties. For instance, βpL is equal to 1 whenever p does not ramify in L and αpL is divisible by p whenever p is wildly ramified in L. The aforementioned properties, although interesting, follow easily from definitions; however a more interesting application of these invariants is the fact that they completely characterize the Dedekind zeta function of L. Moreover, if the residue class mod p of αpL is not zero for all p then such residues determine the genus of the integral trace.

  1. (Communicated by Milan Paštéka)

References

[1] Cassels, J. W. S.: Rational quadratic forms Dover Publications, Inc., Mineola, NY, 2008.Search in Google Scholar

[2] Conner, P. E. Perlis, R.: A survey of trace forms of algebraic number fields World Scientific, Singapore, 1984.10.1142/0066Search in Google Scholar

[3] Conway, J. H. Sloane, N. J. A.: Sphere packings, lattices and groups 3rd ed., Springer-Verlag, New York, 1999.10.1007/978-1-4757-6568-7Search in Google Scholar

[4] Conner, P. E. Yui, N.: The additive characters of the Witt ring of an algebraic number field Canad. J. Math. 9(3) (1988), 546–588.10.4153/CJM-1988-024-xSearch in Google Scholar

[5] Erez, B. Morales, J. Perlis, R.: Sur le Genre de la form trace Seminaire de Théorie des Nombres de Bordeaux. (Talence, 1987–1988), Exp. No. 18, 15 pp.Search in Google Scholar

[6] Iwasawa, K.: On the rings of valuation vectors Ann. of Math. 57 (1953), 331-356.10.2307/1969863Search in Google Scholar

[7] Komatsu, K.: On the adele rings of arithmetically equivalent fields Acta Arith. 43(2) (1984), 93–95.10.4064/aa-43-2-93-95Search in Google Scholar

[8] Komatsu, K.: On the adele rings of algebraic number fields Kodai Math. Sem. Rep. 28 (1976), 78–84.10.2996/kmj/1138847384Search in Google Scholar

[9] Gallagher, V. P. Local trace forms Linear Multilinear Algebra 7 (1979), 167–174.10.1080/03081087908817274Search in Google Scholar

[10] Hasse, H.: Number Theory Springer-Verlag, Berlin Heidelberg, 2002.Search in Google Scholar

[11] Krüskemper, M.: Algebraic number field extensions with prescribed trace form J. Number Theory 40(1) (1992), 120–124.10.1016/0022-314X(92)90032-KSearch in Google Scholar

[12] Maurer, D.: The Trace-Form of an algebraic number field J. Number Theory 5 (1973), 379–384.10.1016/0022-314X(73)90038-3Search in Google Scholar

[13] Mantilla-Soler, G.: On the arithmetic determination of the trace, J. Algebra 444 (2015), 1272–283.10.1016/j.jalgebra.2015.07.029Search in Google Scholar

[14] Mantilla-Soler, G.: The Spinor genus of the integral trace form, Trans. Amer. Math. Soc. 369 (2017), 1547–1577.10.1090/tran/6723Search in Google Scholar

[15] Mantilla-Soler, G.: An ℓ−p switch trick to obtain a new proof of a criterion for arithmetic equivalence, Res. Number Theory 5(1) (2019), 1–5.10.1007/s40993-018-0139-5Search in Google Scholar

[16] Mantilla-Soler, G.: On a question of Perlis and Stuart regarding arithmetic equivalence, New York J. Math. 25 (2019), 558–573.Search in Google Scholar

[17] Neukirch, J.: Algebraic Number Theory Springer, 1999.10.1007/978-3-662-03983-0Search in Google Scholar

[18] Perlis, R. Stuart, D.: A new characterization of arithmetic equivalence J. Number Theory 53 (1995), 300–308.10.1006/jnth.1995.1092Search in Google Scholar

[19] O'meara, O. T.: Introduction to Quadratic Forms. Grundlehren Math. Wiss. 117, Springer, Berlin, Academic Press, New York, 1963.10.1007/978-3-642-62031-7Search in Google Scholar

[20] Serre, J. P.: Local Fields. Grad. Texts in Math. 67, Springer-Verlag, New York-Berlin, 1979.10.1007/978-1-4757-5673-9Search in Google Scholar

[21] Taussky-Todd, O.: The discriminant matrix of a number field J. London. Math. Soc. 43 (1968), 152–154.10.1112/jlms/s1-43.1.152Search in Google Scholar

Received: 2019-11-04
Accepted: 2020-05-14
Published Online: 2021-01-29
Published in Print: 2021-02-23

© 2021 Mathematical Institute Slovak Academy of Sciences

Downloaded on 18.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ms-2017-0464/html
Scroll to top button