Abstract
Let L be a number field. For a given prime p, we define integers
(Communicated by Milan Paštéka)
References
[1] Cassels, J. W. S.: Rational quadratic forms Dover Publications, Inc., Mineola, NY, 2008.Search in Google Scholar
[2] Conner, P. E. Perlis, R.: A survey of trace forms of algebraic number fields World Scientific, Singapore, 1984.10.1142/0066Search in Google Scholar
[3] Conway, J. H. Sloane, N. J. A.: Sphere packings, lattices and groups 3rd ed., Springer-Verlag, New York, 1999.10.1007/978-1-4757-6568-7Search in Google Scholar
[4] Conner, P. E. Yui, N.: The additive characters of the Witt ring of an algebraic number field Canad. J. Math. 9(3) (1988), 546–588.10.4153/CJM-1988-024-xSearch in Google Scholar
[5] Erez, B. Morales, J. Perlis, R.: Sur le Genre de la form trace Seminaire de Théorie des Nombres de Bordeaux. (Talence, 1987–1988), Exp. No. 18, 15 pp.Search in Google Scholar
[6] Iwasawa, K.: On the rings of valuation vectors Ann. of Math. 57 (1953), 331-356.10.2307/1969863Search in Google Scholar
[7] Komatsu, K.: On the adele rings of arithmetically equivalent fields Acta Arith. 43(2) (1984), 93–95.10.4064/aa-43-2-93-95Search in Google Scholar
[8] Komatsu, K.: On the adele rings of algebraic number fields Kodai Math. Sem. Rep. 28 (1976), 78–84.10.2996/kmj/1138847384Search in Google Scholar
[9] Gallagher, V. P. Local trace forms Linear Multilinear Algebra 7 (1979), 167–174.10.1080/03081087908817274Search in Google Scholar
[10] Hasse, H.: Number Theory Springer-Verlag, Berlin Heidelberg, 2002.Search in Google Scholar
[11] Krüskemper, M.: Algebraic number field extensions with prescribed trace form J. Number Theory 40(1) (1992), 120–124.10.1016/0022-314X(92)90032-KSearch in Google Scholar
[12] Maurer, D.: The Trace-Form of an algebraic number field J. Number Theory 5 (1973), 379–384.10.1016/0022-314X(73)90038-3Search in Google Scholar
[13] Mantilla-Soler, G.: On the arithmetic determination of the trace, J. Algebra 444 (2015), 1272–283.10.1016/j.jalgebra.2015.07.029Search in Google Scholar
[14] Mantilla-Soler, G.: The Spinor genus of the integral trace form, Trans. Amer. Math. Soc. 369 (2017), 1547–1577.10.1090/tran/6723Search in Google Scholar
[15] Mantilla-Soler, G.: An ℓ−p switch trick to obtain a new proof of a criterion for arithmetic equivalence, Res. Number Theory 5(1) (2019), 1–5.10.1007/s40993-018-0139-5Search in Google Scholar
[16] Mantilla-Soler, G.: On a question of Perlis and Stuart regarding arithmetic equivalence, New York J. Math. 25 (2019), 558–573.Search in Google Scholar
[17] Neukirch, J.: Algebraic Number Theory Springer, 1999.10.1007/978-3-662-03983-0Search in Google Scholar
[18] Perlis, R. Stuart, D.: A new characterization of arithmetic equivalence J. Number Theory 53 (1995), 300–308.10.1006/jnth.1995.1092Search in Google Scholar
[19] O'meara, O. T.: Introduction to Quadratic Forms. Grundlehren Math. Wiss. 117, Springer, Berlin, Academic Press, New York, 1963.10.1007/978-3-642-62031-7Search in Google Scholar
[20] Serre, J. P.: Local Fields. Grad. Texts in Math. 67, Springer-Verlag, New York-Berlin, 1979.10.1007/978-1-4757-5673-9Search in Google Scholar
[21] Taussky-Todd, O.: The discriminant matrix of a number field J. London. Math. Soc. 43 (1968), 152–154.10.1112/jlms/s1-43.1.152Search in Google Scholar
© 2021 Mathematical Institute Slovak Academy of Sciences
Articles in the same Issue
- Regular papers
- Prof. RNDr. Ing. Lubomír Kubáček, DrSc., Dr.h.c. –Nonagenarian
- Doc. RNDr. Roman Frič, DrSc. passed away
- Outer and inner approximations in quantum spaces
- Linear derivations on Banach *-algebras
- New fractional order discrete Grüss type inequality
- Exponential trigonometric convex functions and Hermite-Hadamard type inequalities
- Generalized Minkowski type inequality for pseudo-integral
- Study of the Q-spiral-like functions of complex order
- Radius of starlikeness of certain analytic functions
- Successive approximations for a differential equation in a Banach space via Constantin condition
- Approximation of the multi-m-Jensen-quadratic mappings and a fixed point approach
- Oscillation and asymptotic behavior of a higher-order neutral delay difference equation with variable delays under Δm
- Sequence selection properties in Cp(X) with the double ideals
- On the paranormed Nörlund difference sequence space of fractional order and geometric properties
- On certain Diophantine equations concerning the area of right triangles
- Weighted projective Ricci curvature in Finsler geometry
- Euler classes of vector bundles over manifolds
- A new generalized Lindley-Weibull class of distributions: Theory, properties and applications
- Dynamical behaviors of a prey-predator model with foraging arena scheme in polluted environments
- The (α, β)-ramification invariants of a number field
Articles in the same Issue
- Regular papers
- Prof. RNDr. Ing. Lubomír Kubáček, DrSc., Dr.h.c. –Nonagenarian
- Doc. RNDr. Roman Frič, DrSc. passed away
- Outer and inner approximations in quantum spaces
- Linear derivations on Banach *-algebras
- New fractional order discrete Grüss type inequality
- Exponential trigonometric convex functions and Hermite-Hadamard type inequalities
- Generalized Minkowski type inequality for pseudo-integral
- Study of the Q-spiral-like functions of complex order
- Radius of starlikeness of certain analytic functions
- Successive approximations for a differential equation in a Banach space via Constantin condition
- Approximation of the multi-m-Jensen-quadratic mappings and a fixed point approach
- Oscillation and asymptotic behavior of a higher-order neutral delay difference equation with variable delays under Δm
- Sequence selection properties in Cp(X) with the double ideals
- On the paranormed Nörlund difference sequence space of fractional order and geometric properties
- On certain Diophantine equations concerning the area of right triangles
- Weighted projective Ricci curvature in Finsler geometry
- Euler classes of vector bundles over manifolds
- A new generalized Lindley-Weibull class of distributions: Theory, properties and applications
- Dynamical behaviors of a prey-predator model with foraging arena scheme in polluted environments
- The (α, β)-ramification invariants of a number field