Startseite Mathematik Exponential trigonometric convex functions and Hermite-Hadamard type inequalities
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Exponential trigonometric convex functions and Hermite-Hadamard type inequalities

  • Mahir Kadakal , İmdat İşcan , Praveen Agarwal EMAIL logo und Mohamed Jleli
Veröffentlicht/Copyright: 29. Januar 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this manuscript, we introduce and study the concept of exponential trigonometric convex functions and their some algebraic properties. We obtain Hermite-Hadamard type inequalities for the newly introduced class of functions. We also obtain some refinements of the Hermite-Hadamard inequality for functions whose first derivative in absolute value, raised to a certain power which is greater than one, respectively at least one, is exponential trigonometric convex function. It has been shown that the result obtained with Hölder-İşcan and improved power-mean integral inequalities give better approximations than that obtained with Hölder and improved power-mean integral inequalities.


M. Jleli is supported by the Researchers Supporting Project RSP-2020/57, King Saud University, Riyadh, Saudi Arabia.


Acknowledgement

M. Jleli is supported by the Researchers Supporting Project RSP-2020/57, King Saud University, Riyadh, Saudi Arabia.

  1. (Communicated by Tomasz Natkaniec)

References

[1] Bombardelli, M.—Varošanec, S.: Properties ofh-convex functions related to the Hermite-Hadamard-Fejér inequalities, Comput. Math. Appl. 58 (2009), 1869–1877.10.1016/j.camwa.2009.07.073Suche in Google Scholar

[2] Dragomir, S. S.—Agarwal, R. P.: Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. Lett. 11 (1998), 91–95.10.1016/S0893-9659(98)00086-XSuche in Google Scholar

[3] Dragomir, S. S.—Pearce, C. E. M.: Selected Topics on Hermite-Hadamard Inequalities and Its Applications, RGMIA Monograph, 2002.Suche in Google Scholar

[4] Dragomir, S. S.—Pečarić, J.—Persson, L. E.: Some inequalities of Hadamard type, Soochow J. Math. 21(3) (2001), 335–341.Suche in Google Scholar

[5] Hadamard, J.: Étude sur les propriétés des fonctions entières en particulier ďune fonction considérée par Riemann, J. Math. Pures Appl. 58 (1893), 171–215.Suche in Google Scholar

[6] İşcan, İ.: New refinements for integral and sum forms of Hölder inequality, J. Inequal. Appl. 2019 (2019), Art. ID 304.10.1186/s13660-019-2258-5Suche in Google Scholar

[7] İşcan, İ.—Kunt, M.: Hermite-Hadamard-Fejer type inequalities for quasi-geometrically convex functions via fractional integrals, J. Math. 2016 (2016), Art. ID 6523041.10.1155/2016/6523041Suche in Google Scholar

[8] Kadakal, H.: Hermite-Hadamard type inequalities for trigonometrically convex functions, Sci. Stud. Res. Ser. Math. Inform. 28(2) (2018), 19–28.10.18514/MMN.2018.2066Suche in Google Scholar

[9] Kadakal, H.: New inequalities for stronglyr-convex functions, J. Funct. Spaces 2019 (2019), Art. Id. 1219237.10.1155/2019/1219237Suche in Google Scholar

[10] Kadakal, M.—İşcan, İ.—Kadakal, H.—BEKAR, K.: On improvements of some integral inequalities, Miskolc Math. Notes, submitted.Suche in Google Scholar

[11] Kadakal, M.—Kadakal, H.—İşcan, İ.: Some new integral inequalities forn-times differentiables-convex functions in the first sense, Turkish Journal of Analysis and Number Theory 5(2) (2017), 63–68.10.12691/tjant-5-2-4Suche in Google Scholar

[12] Maden, S.—Kadakal, H.—Kadakal, M.—İşcan, İ.: Some new integral inequalities forn-times differentiable convex and concave functions, J. Nonlinear Sci. Appl. 10(12) (2017), 6141–6148.10.22436/jnsa.010.12.01Suche in Google Scholar

[13] Özcan, S.: Some integral inequalities for harmonically (α, s)-convex functions, J. Funct. Spaces 2019 (2019), Art. ID 2394021.10.1155/2019/2394021Suche in Google Scholar

[14] Özcan, S.—İşcan, İ.: Some new Hermite-Hadamard type inequalities fors-convex functions and their applications, J. Inequal. Appl. 2019 (2019), Art. ID 201.10.1186/s13660-019-2151-2Suche in Google Scholar

[15] Varošanec, S.: Onh-convexity, J. Math. Anal. Appl. 326 (2007), 303–311.10.1016/j.jmaa.2006.02.086Suche in Google Scholar

[16] Zabandan, G.: A new refinement of the Hermite-Hadamard inequality for convex functions, J. Inequal. Pure Appl. Math. 10(2) (2009), Art. ID 45.Suche in Google Scholar

Received: 2020-02-20
Accepted: 2020-06-27
Published Online: 2021-01-29
Published in Print: 2021-02-23

© 2021 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 15.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2017-0410/pdf
Button zum nach oben scrollen