Startseite Technik PVA/SiO2 nanocomposite films: evaluation of mechanical, thermal, optical and physico-schemical properties
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

PVA/SiO2 nanocomposite films: evaluation of mechanical, thermal, optical and physico-schemical properties

  • Varsha Srivastava , Sangeeta Garg und Amit D. Saran ORCID logo EMAIL logo
Veröffentlicht/Copyright: 8. August 2025
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Polyvinyl alcohol (PVA) films embedded with SiO2 nanoparticles (33–59 nm) were studied for their mechanical, thermal, optical, and physicochemical properties. SiO2 nanoparticle sizes were controlled using a modified sol–gel method. Characterization was done using field emission-scanning electron microscopy, X-ray diffraction, Fourier transform-infrared spectroscopy, UV–Vis spectroscopy, universal testing machine, and differential scanning calorimetry. Maximum tensile strength (45.7 MPa) was achieved for the particle size of SiO2 as 33 nm. Mechanical strength increased from 18.3 MPa (pure PVA) to 47.3 MPa (6 wt.% SiO2) and decreased at higher loadings. The melting point was enhanced from 210 °C (pure PVA) to 222.2 °C (6 wt.% SiO2). Enthalpy of fusion increased from 3.9 J g−1 to 10.1 J g−1, and % crystallinity from 2.3 % to 6.1 %. Density, chemical resistance, and water barrier properties were also enhanced. For achieving maximum tensile strength, optimal reagent concentrations for particle size and loading were determined using response surface methodology. This study highlights PVA/SiO2 films as potential packaging materials with improved properties.


Corresponding author: Amit D. Saran, Department of Chemical Engineering, Dr. B.R. Ambedkar National Institute of Technology Jalandhar, Jalandhar, Punjab, 144008, India, E-mail:

  1. Research ethics: Not applicable.

  2. Informed consent: Informed consent was obtained from all individuals included in this study, or their legal guardians or wards.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: All other authors state no conflict of interest.

  6. Research funding: The authors would like to thank the SCIENCE AND ENGINEERING RESEARCH BOARD, (SERB) (A statutory body of the Department of Science and Technology, Government of India) for the funded research project entitled “Colloidal Quantum dots as Enhancers in Photo catalytic Hydrogen Generation”, file no. CRG/2021/000011-G.

  7. Data availability: Data will be made available on request.

References

1. Moskalyuk, O. A.; Belashov, A. V.; Zhikhoreva, A. A.; Beltukov, Y. M.; Semenova, I. V. Mechanical Performance of Polystyrene-based Nanocomposites Filled with Carbon Allotropes. Appl. Sci. (Switzerland) 2023, 13 (6). https://doi.org/10.3390/app13064022.Suche in Google Scholar

2. Zhang, C.; Wang, H.; Zhang, T.; Zhang, Y.; Zhang, Y.; Tang, C. Significantly Enhanced Energy Storage Density and Efficiency of Sandwich Polymer-based Composite via Doped MgO and TiO2 Nanofillers. J. Mater. Sci. 2023, 58 (31), 12724–12735. https://doi.org/10.1007/s10853-023-08809-5.Suche in Google Scholar

3. Satya, S. K.; Sreekanth, P. S. R. Morphological, Thermal and Viscoelastic Behavior of Recycled High Density Polyethylene Nanocomposite Incorporated with 1D/2D Nanofillers. Iran. Polym. J. (English Edition) 2022, 31 (5), 629–640. https://doi.org/10.1007/s13726-022-01023-1.Suche in Google Scholar

4. Muringayil Joseph, T.; Azat, S.; Ahmadi, Z.; Moini Jazani, O.; Esmaeili, A.; Kianfar, E.; Haponiuk, J.; Thomas, S. Polyethylene Terephthalate (PET) Recycling: a Review. Case Stud. Chem. Environ. Eng. 2024, 9 (January). https://doi.org/10.1016/j.cscee.2024.100673.Suche in Google Scholar

5. Jilani, W.; Bouzidi, A.; Zahran, H. Y.; Yahia, I. S. Identifying the Functional Properties and Characterizations of PVA/PVP Polymer Blends incorporating CdS/ZnO Core–Shell (ZCS) Fillers for Optoelectronic Applications. J. Mater. Sci.: Mater. Electron. 2024, 35 (6), 1–23. https://doi.org/10.1007/s10854-024-12188-1.Suche in Google Scholar

6. Khan, N. A.; Niazi, M. B. K.; Sher, F.; Jahan, Z.; Noor, T.; Azhar, O.; Rashid, T.; Iqbal, N. Metal Organic Frameworks Derived Sustainable Polyvinyl Alcohol/Starch Nanocomposite Films as Robust Materials for Packaging Applications. Polymers 2021, 13 (14), 1–16. https://doi.org/10.3390/polym13142307.Suche in Google Scholar PubMed PubMed Central

7. Shen, Z.; Rajabi-Abhari, A.; Oh, K.; Yang, G.; Youn, H. J.; Lee, H. L. Improving the Barrier Properties of Packaging Paper by Polyvinyl Alcohol Based Polymer Coating–Effect of the Base Paper and Nanoclay. Polymers 2021, 13 (8). https://doi.org/10.3390/polym13081334.Suche in Google Scholar PubMed PubMed Central

8. Peng, Z.; Kong, L. X.; Li, S. D.; Spiridonov, P. Poly(Vinyl Alcohol)/Silica Nanocomposites: Morphology and Thermal Degradation Kinetics. J. Nanosci. Nanotechnol. 2006, 6 (12), 3934–3938. https://doi.org/10.1166/jnn.2006.666.Suche in Google Scholar PubMed

9. Mirković, M.; Kljajević, L.; Dolenec, S.; Nenadović, M.; Pavlović, V.; Rajačić, M.; Nenadović, S. Potential Usage of Hybrid Polymers Binders Based on Fly Ash with the Addition of Pva with Satisfying Mechanical and Radiological Properties. Gels 2021, 7 (4), 1–12. https://doi.org/10.3390/gels7040270.Suche in Google Scholar PubMed PubMed Central

10. Mallakpour, S.; Naghdi, M. Polymer/SiO2 Nanocomposites: Production and Applications. Prog. Mater. Sci. 2018, 97, 409–447. https://doi.org/10.1016/j.pmatsci.2018.04.002.Suche in Google Scholar

11. Feng, Z.; Adolfsson, K. H.; Xu, Y.; Fang, H.; Hakkarainen, M.; Wu, M. Carbon Dot/Polymer Nanocomposites: from Green Synthesis to Energy, Environmental and Biomedical Applications. Sustain. Mater. Technol. 2021, 29 (May), e00304. https://doi.org/10.1016/j.susmat.2021.e00304.Suche in Google Scholar

12. Xu, J.; Manepalli, P. H.; Zhu, L.; Narayan-Sarathy, S.; Alavi, S. Morphological, Barrier and Mechanical Properties of Films from Poly (Butylene Succinate) Reinforced with Nanocrystalline Cellulose and Chitin Whiskers Using Melt Extrusion. J. Polym. Res. 2019, 26 (8), 1–10. https://doi.org/10.1007/s10965-019-1783-8.Suche in Google Scholar

13. J, C. R. K.; Majid, M. A. Renewable Energy for Sustainable Development in India: Current Status, Future Prospects, Challenges, Employment, and Investment Opportunities. Energy, Sustain. Soc. 2020, 10 (2), 1–36. Energy, Sustainability and Society, 10(1); https://doi.org/10.1186/S13705-019-0232-1.Suche in Google Scholar

14. Feldman, D. Polymer Nanocomposites in Building, Construction. J. Macromol. Sci., Part A: Pure Appl. Chem. 2014, 51 (3), 203–209. https://doi.org/10.1080/10601325.2014.871948.Suche in Google Scholar

15. Dhatarwal, P.; Choudhary, S.; Sengwa, R. J. Dielectric and Optical Properties of Alumina and Silica Nanoparticles Dispersed Poly(Methyl Methacrylate) Matrix-based Nanocomposites for Advanced Polymer Technologies. J. Polym. Res. 2021, 28 (2), 5–9. https://doi.org/10.1007/s10965-020-02406-9.Suche in Google Scholar

16. Abdou, E. S.; Abdel-Hakim, A.; Morsi, R. E. Influence of Citronella Essential Oil and TiO2 Nanoparticles on the Optical, Mechanical and Thermal Characteristics of Chitosan/Poly(Vinyl Alcohol) Blended Films and Nanofibers. Polym. Bull. 2024, 81 (9), 7943–7961. https://doi.org/10.1007/s00289-023-05081-0.Suche in Google Scholar

17. Rahimi-Ahar, Z.; Rahimi, A. L. Thermal, Optical, Mechanical, Dielectric, and Electrical Properties of Nanocomposites. Eur. Polym. J. 2024, 218 (July), 113337. https://doi.org/10.1016/j.eurpolymj.2024.113337.Suche in Google Scholar

18. Abd-Elnaiem, A. M.; Rashad, M.; Hanafy, T. A.; Shaalan, N. M. Improvement of Optical Properties of Functionalized Polyvinyl Alcohol-Zinc Oxide Hybrid Nanocomposites for Wide UV Optoelectronic Applications. J. Inorg. Organomet. Polym. Mater. 2023, 33 (8), 2429–2444. https://doi.org/10.1007/s10904-023-02616-w.Suche in Google Scholar

19. Nayak, J. K.; Behera, L.; Jali, B. R. TiO2 Strengthened PLA Nanocomposites: a Prospective Material for Packaging Application. J. Mol. Struct. 2024, 1316 (February), 138892. https://doi.org/10.1016/j.molstruc.2024.138892.Suche in Google Scholar

20. Agarwal, S.; Patidar, D.; Saxena, N. S. Effective Thermal Conductivity of CdS/ZnS Nanoparticles Embedded Polystyrene Nanocomposites. Heat and Mass Transfer/Waerme- und Stoffuebertragung 2013, 49 (7), 947–953. https://doi.org/10.1007/s00231-013-1138-7.Suche in Google Scholar

21. Singh, S.; Garg, S.; Saran, A. D. CdSe/Polyvinyl Alcohol Nanocomposite Films for Packaging: Thermal, Mechanical, Optical and Physico-Chemical Properties. Iran. Polym. J. (English Edition) 2024, 0123456789. https://doi.org/10.1007/s13726-024-01320-x.Suche in Google Scholar

22. Nemeth, K.; Varro, N.; Reti, B.; Berki, P.; Adam, B.; Belina, K.; Hernadi, K. Synthesis and Investigation of SiO2-MgO Coated MWCNTs and their Potential Application. Sci. Rep. 2019, 9 (1), 1–11. https://doi.org/10.1038/s41598-019-51745-1.Suche in Google Scholar PubMed PubMed Central

23. Srivastava, V.; Garg, S.; Saran, A. D. Advanced Polymer Nanocomposites in Packaging Applications. J. Polym. Eng. 2025, 45 (6), 480–505. https://doi.org/10.1515/polyeng-2024-0248.Suche in Google Scholar

24. Singh, S.; Garg, S.; Giri, A. S.; Saran, A. D. Kinetics, Mechanism and Optimization for the Degradation of 3-Aminopyridine Using CdSe Nanodots and Nanorods. J. Indian Chem. Soc. 2025, 102 (6), 101744. https://doi.org/10.1016/j.jics.2025.101744.Suche in Google Scholar

25. Thang, T. H.; Nguyen, T. A. Polymer Nanocomposites for Food-Packaging Applications. Smart Polym. Nanocompos.: Des., Synthesis, Functionalization, Prop. Appl. 2022, 333–354. https://doi.org/10.1016/B978-0-323-91611-0.00001-3.Suche in Google Scholar

26. Sabr, O.; Hussein, A.; Obaid, M. Preparation and Evalution Water Resistance, Mechanical and Morpholgical Characteristics of Pva/Sio2 Nanocomposites for Food Industry Applications. Dig. J. Nanomater. Biostruct. 2021, 16 (2), 733–745; https://doi.org/10.15251/djnb.2021.162.733.Suche in Google Scholar

27. Soliman, T. S.; Vshivkov, S. A.; Elkalashy, S. I. Structural, Thermal, and Linear Optical Properties of SiO2 Nanoparticles Dispersed in Polyvinyl Alcohol Nanocomposite Films. Polym. Compos. 2020, 41 (8), 3340–3350. https://doi.org/10.1002/pc.25623.Suche in Google Scholar

28. Ahmed, S. J.; Al-Bermany, E. Performance SiO2, GO, and SiO2@GO Nanomaterials on Fabricating New Polymer Nanocomposites for Optical, Antibacterial, and Anticancer Applications. Appl. Nanosci. 2025, 15 (1), 3. https://doi.org/10.1007/s13204-024-03080-9.Suche in Google Scholar

29. Shanmathy, M.; Mohanta, M.; Thirugnanam, A. Development of Biodegradable Bioplastic Films from Taro Starch Reinforced with Bentonite. Carbohydr. Polym. Technol. Appl. 2021, 2, 100173. https://doi.org/10.1016/j.carpta.2021.100173.Suche in Google Scholar

30. Abdullah, Z. W.; Dong, Y.; Davies, I. J.; Barbhuiya, S. PVA, PVA Blends, and their Nanocomposites for Biodegradable Packaging Application. Polym.-Plast. Technol. Eng. 2017, 56 (12), 1307–1344. https://doi.org/10.1080/03602559.2016.1275684.Suche in Google Scholar

31. Erol, I.; Hazman, Ö.; Yılmaz, F.; Khamidov, G. Enhanced Biological, Thermal and Dielectric Properties of Polyvinyl Alcohol by a Methacrylate Polymer and Green Synthesized Silver Nanoparticles. J. Polym. Environ. 2025, 33, 2173–2192. https://doi.org/10.1007/s10924-025-03516-5.Suche in Google Scholar

32. Kaur, G.; Kumar, P.; Singh, A. K.; Jayoti, D.; Malik, P. Dielectric and Electro-Optic Studies of a Ferroelectric Liquid Crystal Dispersed with Different Sizes of Silica Nanoparticles. Liq. Cryst. 2020, 47 (14–15), 2194–2208. https://doi.org/10.1080/02678292.2020.1759154.Suche in Google Scholar

33. Kim, T. G.; An, G. S.; Han, J. S.; Hur, J. U.; Park, B. G.; Choi, S.-C. Synthesis of Size Controlled Spherical Silica Nanoparticles via Sol-Gel Process within Hydrophilic Solvent. J. Korean Ceram. Soc. 2017, 54 (1), 49–54. https://doi.org/10.4191/kcers.2017.54.1.10.Suche in Google Scholar

34. Pingan, H.; Mengjun, J.; Yanyan, Z.; Ling, H. A Silica/PVA Adhesive Hybrid Material with High Transparency, Thermostability and Mechanical Strength. RSC Adv. 2017, 7 (5), 2450–2459. https://doi.org/10.1039/C6RA25579E.Suche in Google Scholar

35. Qasim, M.; Ananthaiah, J.; Dhara, S.; Paik, P.; Das, D. Synthesis and Characterization of Ultra-fine Colloidal Silica Nanoparticles. Adv. Sci., Eng. Med. 2014, 6 (9), 965–973. https://doi.org/10.1166/asem.2014.1578.Suche in Google Scholar

36. Singh, S.; Garg, S.; Saran, A. D. CdSe Nanodots to Nanorods in PVA Films: Effect of Shape Transition and Loading on the Opto-Mechanical and Biodegradation Properties. J. Polym. Eng. 2023, 43 (8), 715–728. https://doi.org/10.1515/polyeng-2023-0031.Suche in Google Scholar

37. Shrivastava, S.; Verma, R.; Kumar, V.; Soni, R.; Saini, G. Evaluation of Corrosion Resistance of As-Sprayed WC–Co–Cr on DH-36 Steel with Addition of 3% GNPs. Trans. Indian Inst. Met. 2024, 77 (5), 1413–1421. https://doi.org/10.1007/s12666-023-03045-6.Suche in Google Scholar

38. Sakshi, K. S. Synthesis and Characterization of a Cd(II) Complex: Anion Interaction and Fabrication of Cadmium Oxide Nanoparticles. Mater. Today: Proc. 2023, 78, 809–814. https://doi.org/10.1016/j.matpr.2022.11.217.Suche in Google Scholar

39. Nandal, K.; Vaid, V.; Rahul; Saini, P.; Devanshi; Sharma, R. K.; Joshi, V.; Jindal, R.; Mittal, H. Synthesis and Characterization of κ-Carrageenan and Guar Gum-based Hydrogels for Controlled Release Fertilizers: Optimization, Release Kinetics, and Agricultural Impact. Ind. Crops Prod. 2025, 225, 120587. https://doi.org/10.1016/j.indcrop.2025.120587.Suche in Google Scholar

40. Mittal, A.; Garg, S.; Bajpai, S. Fabrication and Characteristics of Poly (Vinyl Alcohol)-Starch-Cellulosic Material Based Biodegradable Composite Film for Packaging Application. Mater. Today: Proc. 2020, 21, 1577–1582. https://doi.org/10.1016/j.matpr.2019.11.210.Suche in Google Scholar

41. Mittal, A.; Garg, S.; Kohli, D.; Maiti, M.; Jana, A. K.; Bajpai, S. Effect of Cross Linking of PVA/Starch and Reinforcement of Modified Barley Husk on the Properties of Composite Films. Carbohydr. Polym. 2016, 151, 926–938. https://doi.org/10.1016/j.carbpol.2016.06.037.Suche in Google Scholar PubMed

42. Devi, P. V.; Dhall, R. K.; Brar, J. K. Nutritional and Bioactive Compounds, Antioxidant Properties and Antibacterial Activity of Chinese Chive (Allium odorum L.). Plant Foods Hum. Nutr. 2025, 80 (1), 6. https://doi.org/10.1007/s11130-024-01259-7.Suche in Google Scholar PubMed

43. Ibrahim, I. A. M.; Zikry, A. A. F.; Sharaf, M. A. Preparation of Spherical Silica Nanoparticles: Stober Silica. J. Am. Sci. 2010, 6 (11), 985–989.Suche in Google Scholar

44. Kamel, M. M.; Alsohaimi, I. H.; Alhumaimess, M. S.; Hassan, H. M. A.; Alshammari, M. S.; El-Sayed, M. Y. A Glassy Polyvinyl Alcohol/Silica Gel Hybrid Composite for Safranin Removal: Adsorption, Kinetic and Thermodynamic Studies. Res. Chem. Intermed. 2021, 47 (3), 925–944. https://doi.org/10.1007/s11164-020-04309-2.Suche in Google Scholar

45. Zhao, X.; Hu, J.; Yang, X.; Huang, Z.; Bian, X.; Lin, Y.; He, J. Filler Size Effect on Tuning Electrical, Mechanical, and Thermal Properties of Field Grading Composites. CSEE J. Power and Energy Syst. 2023, 9 (2), 743–750. https://doi.org/10.17775/CSEEJPES.2022.05280.Suche in Google Scholar

46. Obasi, H. C.; Mark, U. C.; Mark, U. Improving the Mechanical Properties of Polypropylene Composites with Coconut Shell Particles. Compos. Adv. Mater. 2021, 30. https://doi.org/10.1177/26349833211007497.Suche in Google Scholar

47. Dodda, J. M.; Bělský, P.; Chmelař, J.; Remiš, T.; Smolná, K.; Tomáš, M.; Kullová, L.; Kadlec, J. Comparative Study of PVA/SiO2 and PVA/SiO2/Glutaraldehyde (GA) Nanocomposite Membranes Prepared by Single-step Solution Casting Method. J. Mater. Sci. 2015, 50 (19), 6477–6490. https://doi.org/10.1007/s10853-015-9206-7.Suche in Google Scholar

48. Alawi, A. I.; Al-Bermany, E. Newly Fabricated Ternary PAAm-PVA-PVP Blend Polymer Doped by SiO2: Absorption and Dielectric Characteristics for Solar Cell Applications and Antibacterial Activity. Silicon 2023, 15 (13), 5773–5789. https://doi.org/10.1007/s12633-023-02477-5.Suche in Google Scholar

49. Maheshwaran, C.; Kanchan, D. K.; Mishra, K.; Kumar, P.; Kumar, D. Proton Ion-Conducting Polymer Electrolytes Added with SiO2 Nanoparticles: Conductivity, Dielectric, Relaxation, and Physical Studies. Ionics 2024, 30 (4), 2155–2166. https://doi.org/10.1007/s11581-024-05408-5.Suche in Google Scholar

50. Sania, N. F.; Munasir, M. Fabrication of PVA/SiO2 (Nanofiber) Membranes Prepared Using Electrospinning Method for Lithium Battery Separator. J. Phys.: Conf. Ser. 2022, 2392 (1). https://doi.org/10.1088/1742-6596/2392/1/012008.Suche in Google Scholar

51. Quilez-Molina, A. I.; Marini, L.; Athanassiou, A.; Bayer, I. S. Uv-Blocking, Transparent, and Antioxidant Polycyanoacrylate Films. Polymers 2020, 12 (9), 1–20. https://doi.org/10.3390/polym12092011.Suche in Google Scholar PubMed PubMed Central

52. Hashim, A.; Kareem, A.; Ibrahim, H. Production and Ameliorating the Characteristics of (SiO2-CdS) Futuristic Nanoceramic Doped Optical Material for Flexible Nanoelectronics Applications. Silicon 2025, 17 (3), 517–530. https://doi.org/10.1007/s12633-024-03213-3.Suche in Google Scholar

53. Kadhim, A. F.; Hashim, A. Fabrication and Augmented Structural Optical Properties of PS/SiO2/SrTiO3 Hybrid Nanostructures for Optical and Photonics Applications. Opt Quant. Electron 2023, 55 (5), 432. https://doi.org/10.1007/s11082-023-04699-8.Suche in Google Scholar

54. Koteswararao, J.; Satyanarayana, S. V.; Madhu, G. M.; Venkatesham, V. Estimation of Structural and Mechanical Properties of Cadmium Sulfide/PVA Nanocomposite Films. Heliyon 2019, 5 (6), 1–7. https://doi.org/10.1016/j.heliyon.2019.e01851.Suche in Google Scholar PubMed PubMed Central

55. Rahman Khan, M. M.; Rumon, M. M. H.; Islam, M. S. Rheology, Morphology, and Mechanical Properties of Biodegradable PVA-based Composite Films: a Review on Recent Progress. Processes 2024, 12 (12), 2880. https://doi.org/10.3390/pr12122880.Suche in Google Scholar

56. Kamal, A.; Li, B.; Solayman, A.; Luo, S.; Kinloch, I.; Zheng, L.; Liao, K. Mechanical Properties of Two-Dimensional Material-based Thin Films: a Comprehensive Review. Nanoscale Horiz 2025, 10 (3), 512–536. https://doi.org/10.1039/D4NH00425F.Suche in Google Scholar PubMed

57. Mukhopadhyay, R.; Bhaduri, D.; Sarkar, B.; Rusmin, R.; Hou, D.; Khanam, R.; Sarkar, S.; Kumar Biswas, J.; Vithanage, M.; Bhatnagar, A.; Ok, Y. S. Clay–Polymer Nanocomposites: Progress and Challenges for Use in Sustainable Water Treatment. J. Hazard. Mater. 2020, 383 (August 2019), 121125. https://doi.org/10.1016/j.jhazmat.2019.121125.Suche in Google Scholar PubMed

58. Cai, J.; Cao, J.; Tao, H.; Li, R.; Huang, M. Three-Dimensional ZnO@TiO2 Core-Shell Nanostructures Decorated with Plasmonic Au Nanoparticles for Promoting Photoelectrochemical Water Splitting. Int. J. Hydrog. Energy 2021, 46 (73), 36201–36209. https://doi.org/10.1016/j.ijhydene.2021.08.140.Suche in Google Scholar

59. Pugar, D.; Haramina, T.; Leskovac, M.; Ćurković, L. Preparation and Characterization of Poly(Vinyl-Alcohol)/Chitosan Polymer Blend Films Chemically Crosslinked with Glutaraldehyde: Mechanical and Thermal Investigations. Molecules 2024, 29 (24), 5914. https://doi.org/10.3390/molecules29245914.Suche in Google Scholar PubMed PubMed Central

60. Kumari, R.; Rana, N.; Ropar, P.; Rayat Institute of Engg Information Technology. Particle Size and Shape Analysis Using Imagej with Customized Tools for Segmentation of Particles. IJERT 2015, V4 (11). https://doi.org/10.17577/IJERTV4IS110211.Suche in Google Scholar

61. Nazari, M.; Shakeri, E.; Mohammadi, M. Fabrication and Optimization Process of Mechanical Properties of MoSi2 Composites Reinforced by Carbon Nanotubes (CNT) Using Taguchi Method. Ceram. Int. 2024, 50 (14), 25568–25577. https://doi.org/10.1016/j.ceramint.2024.04.291.Suche in Google Scholar

Received: 2024-09-30
Accepted: 2025-03-31
Published Online: 2025-08-08
Published in Print: 2025-08-26

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 13.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2024-0262/html
Button zum nach oben scrollen