Home Mechanical characterization of Kevlar/basalt fiber/epoxy hybrid composites containing multiwalled carbon nanotube particles
Article
Licensed
Unlicensed Requires Authentication

Mechanical characterization of Kevlar/basalt fiber/epoxy hybrid composites containing multiwalled carbon nanotube particles

  • Bahjat Hardan Sulaiman , Ahmet Erkliğ , Ömer Yavuz Bozkurt , Atban R. Abdo and Mehmet Bulut ORCID logo EMAIL logo
Published/Copyright: July 25, 2025
Become an author with De Gruyter Brill

Abstract

In the pursuit of advanced materials for high-performance applications, hybrid fiber-reinforced composites have emerged as a promising solution due to their ability to combine the strengths of multiple materials. This study experimentally investigates the mechanical properties of hybrid basalt/Kevlar fiber-reinforced epoxy composite laminates incorporating multi-walled carbon nanotube (MWCNT) particles. Test samples were fabricated using a vacuum-assisted hand lay-up process with varying MWCNT weight ratios (0, 0.1, 0.25, and 0.5 wt.%) and two stacking sequences ([K5B10K5] and [B5K10B5]). Results indicated that optimal MWCNT content significantly enhanced mechanical properties. At 0.1 wt.%, flexural strength and modulus improved by 51 % and 27 %, respectively. Tensile strength and modulus peaked at 0.25 wt.% with enhancements of 17 % and 2 %, respectively. However, excessive MWCNT loading (0.5 wt.%) led to particle agglomeration, reducing performance. These findings highlight the importance of nanoparticle dispersion and interfacial bonding in hybrid composites, offering valuable insights for the development of lightweight, high-strength materials for aerospace, automotive, and protective applications.


Corresponding author: Mehmet Bulut, Sivas Technical Sciences Vocational School Machine Department, Sivas Cumhuriyet University, 58140, Sivas, Türkiye, E-mail:

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The author states no conflict of interest.

  6. Research funding: None declared.

  7. Data availability: Not applicable.

References

1. Dong, C.; Kalantari, M.; Davies, I. J. Robustness for Unidirectional Carbon/Glass Fibre Reinforced Hybrid Epoxy Composites Under Flexural Loading. Compos. Struct. 2015, 128, 354–362. https://doi.org/10.1016/j.compstruct.2015.03.059.Search in Google Scholar

2. Pandya, K. S.; Veerraju, Ch.; Naik, N. K. Hybrid Composites Made of Carbon and Glass Woven Fabrics Under Quasi-Static Loading. Mater. Des. 2011, 32, 4094–4099. https://doi.org/10.1016/j.matdes.2011.03.003.Search in Google Scholar

3. Thakur, V. K.; Thakur, M. K.; Kessler, M. R., Eds. In Handbook of Composites from Renewable Materials, Design and Manufacturing; John Wiley & Sons, Inc.: Hoboken, NJ, USA and Scrivener Publishing LLC: Beverly, MA, USA, Vol. 2, 2017.Search in Google Scholar

4. Tang, Y.; Ye, L.; Zhang, D.; Deng, S. Characterization of Transverse Tensile, Interlaminar Shear and Interlaminate Fracture in CF/EP Laminates with 10wt% and 20wt% Silica Nanoparticles in Matrix Resins. Compos. Part A Appl. Sci. Manuf. 2011, 42, 1943–1950. https://doi.org/10.1016/j.compositesa.2011.08.019.Search in Google Scholar

5. Hosseini Farrash, S. M.; Shariati, M.; Rezaeepazhand, J. The Effect of Carbon Nanotube Dispersion on the Dynamic Characteristics of Unidirectional Hybrid Composites: An Experimental Approach. Compos. Part B Eng. 2017, 122, 1–8. https://doi.org/10.1016/j.compositesb.2017.04.003.Search in Google Scholar

6. Bulut, M.; Alsaadi, M.; Erkliğ, A. A Comparative Study on the Tensile and Impact Properties of Kevlar, Carbon, and S-Glass/Epoxy Composites Reinforced with SiC Particles. Mater. Res. Express 2018, 5, 025301. https://doi.org/10.1088/2053-1591/aaa991.Search in Google Scholar

7. Gardea, F.; Lagoudas, D. C. Characterization of Electrical and Thermal Properties of Carbon Nanotube/Epoxy Composites. Compos. Part B Eng. 2014, 56, 611–620. https://doi.org/10.1016/j.compositesb.2013.08.032.Search in Google Scholar

8. Jiang, Q.; Wang, X.; Zhu, Y.; Hui, D.; Qiu, Y. Mechanical, Electrical and Thermal Properties of Aligned Carbon Nanotube/Polyimide Composites. Compos. Part B Eng. 2014, 56, 408–412. https://doi.org/10.1016/j.compositesb.2013.08.064.Search in Google Scholar

9. Shiu, S. C.; Tsai, J. L. Characterizing Thermal and Mechanical Properties of Graphene/Epoxy Nanocomposites. Compos. Part B Eng. 2014, 56, 691–697. https://doi.org/10.1016/j.compositesb.2013.09.007.Search in Google Scholar

10. El Moumen, A.; Tarfaoui, M.; Lafdi, K. Mechanical Characterization of Carbon Nanotubes Based Polymer Composites Using Indentation Tests. Compos. Part B Eng. 2017, 114, 1–7. https://doi.org/10.1016/j.compositesb.2017.02.005.Search in Google Scholar

11. Chang, M. S. An Investigation on the Dynamic Behavior and Thermal Properties of MWCNTs/FRP Laminate Composites. J. Reinf. Plast. Compos. 2010, 29, 3593–3599. https://doi.org/10.1177/0731684410379510.Search in Google Scholar

12. Yuen, S. M.; Ma, C. C. M.; Wu, H. H.; Kuan, H. C.; Chen, W.; Liao, S.; Hsu, C. Preparation and Thermal, Electrical, and Morphological Properties of Multiwalled Carbon Nanotube and Epoxy Composites. J. Appl. Polym. Sci. 2007, 103, 1272–1278; https://doi.org/10.1002/app.25140.Search in Google Scholar

13. Gojny, F. H.; Wichmann, M. H. G.; Fiedler, B.; Schulte, K. Influence of Different Carbon Nanotubes on the Mechanical Properties of Epoxy Matrix Composites: A Comparative Study. Compos. Sci. Technol. 2005, 65, 2300–2313; https://doi.org/10.1016/j.compscitech.2005.04.021.Search in Google Scholar

14. Shahbaz, S. R.; Berkalp, Ö. B. Effect of MWCNTs Addition, on the Mechanical Behaviour of FRP Composites, by Reinforcement Grafting and Matrix Modification. J. Ind. Text. 2019, 50, 205–223. https://doi.org/10.1177/1528083718825317.Search in Google Scholar

15. Thostenson, E. T.; Li, W. Z.; Wang, D. Z.; Ren, Z. F.; Chou, T. W. Carbon Nanotube/Carbon Fiber Hybrid Multiscale Composites. J. Appl. Phys. 2002, 91, 6034–6037; https://doi.org/10.1063/1.1466880.Search in Google Scholar

16. Li, J.; Zhang, Z.; Fu, J.; Liang, Z.; Ramakrishnan, K. R. Mechanical Properties and Structural Health Monitoring Performance of Carbon Nanotube-Modified FRP Composites: A Review. Nanotechnol. Rev. 2021, 10, 1438–1468. https://doi.org/10.1515/ntrev-2021-0104.Search in Google Scholar

17. Cho, Y. S.; Hdg, V. R. W. A. Encyclopedia of Nanoscience and Nanotechnology. Ceram. Nanopowders 2004, 1, 727.Search in Google Scholar

18. Ebbesen, T. W.; Bennett, J. W.; Ghaemi, H. F.; Ghaemi, H. F.; Thio, T. Electrical Conductivity of Individual Carbon Nanotubes. Nature 1996, 382, 54–56. https://doi.org/10.1038/382054a0.Search in Google Scholar

19. Green, K. J.; Dean, D. R.; Vaidya, U. K.; Nyairo, E. Multiscale Fiber Reinforced Composites Based on a Carbon Nanofiber/Epoxy Nanophased Polymer Matrix: Synthesis, Mechanical, and Thermomechanical Behavior. Compos. Part A Appl. Sci. Manuf. 2009, 40, 1470–1475. https://doi.org/10.1016/j.compositesa.2009.05.010.Search in Google Scholar

20. Wetzel, B.; Rosso, P.; Haupert, F.; Friedrich, K. Epoxy Nanocomposites – Fracture and Toughening Mechanisms. Eng. Fract. Mech. 2006, 73, 2375–2398. https://doi.org/10.1016/j.engfracmech.2006.05.018.Search in Google Scholar

21. Grimmer, C. S.; Dharan, C. K. H. High-Cycle Fatigue of Hybrid Carbon Nanotube/Glass Fiber/Polymer Composites. J. Mater. Sci. 2008, 43 (13), 4487–4492. https://doi.org/10.1007/s10853-008-2651-9.Search in Google Scholar

22. Zabihi, O.; Ahmadi, M.; Li, Q.; Shafei, S.; Huson, M. G.; Naebe, M. Carbon Fibre Surface Modification Using Functionalized Nanoclay: A Hierarchical Interphase for Fibre-Reinforced Polymer Composites. Compos. Sci. Technol. 2017, 148, 49–58. https://doi.org/10.1016/j.compscitech.2017.05.013.Search in Google Scholar

23. Khan, S. U.; Munir, A.; Hussain, R.; Kim, J. K. Fatigue Damage Behaviors of Carbon Fiber-Reinforced Epoxy Composites Containing Nanoclay. Compos. Sci. Technol. 2010, 70, 2077–2085. https://doi.org/10.1016/j.compscitech.2010.08.004.Search in Google Scholar

24. Fiore, V.; Di Bella, G.; Valenza, A. Glass–Basalt/Epoxy Hybrid Composites for Marine Applications. Mater. Des. 2015, 85, 82–90. https://doi.org/10.1016/j.matdes.2015.06.129.Search in Google Scholar

25. Hearle, J. W. S. High-Performance Fibres; Woodhead Publishing Limited:Cambridge, England, 2001.10.1201/9781439823071Search in Google Scholar

26. Rangaswamy, H.; M, H. H.; Chandrashekarappa, M. P. G.; Pimenov, D. Y.; Giasin, K.; Wojciechowski, S. Experimental Investigation and Optimization of Compression Moulding Parameters for MWCNT/Glass/Kevlar/Epoxy Composites on Mechanical and Tribological Properties. J. Mater. Res. Technol. 2021, 15, 327–341. https://doi.org/10.1016/j.jmrt.2021.08.037.Search in Google Scholar

27. Karthik, K.; Rajamani, D.; Venkatesan, E. P.; Shajahan, M. I.; Rajhi, A. A.; Aabid, A.; Baig, M.; Saleh, B. Experimental Investigation of the Mechanical Properties of Carbon/Basalt/SiC nanoparticle/Polyester Hybrid Composite Materials. Crystals 2023, 13, 415. https://doi.org/10.3390/cryst13030415.Search in Google Scholar

28. Ramesh, V.; Karthik, K.; Cep, R.; Elangovan, M. Influence of Stacking Sequence on Mechanical Properties of Basalt/Ramie Biodegradable Hybrid Polymer Composites. Polymers 2023, 15, 985. https://doi.org/10.3390/polym15040985.Search in Google Scholar PubMed PubMed Central

29. Fayaz, H.; Karthik, K.; Christiyan, K. J.; Kumar, M. A.; Sivakumar, A.; Kaliappan, S.; Mohamed, M. J. S.; Subbiah, R.; Yishak, S. An Investigation on the Activation Energy and Thermal Degradation of Biocomposites of Jute/Bagasse/Coir/Nano TiO2/Epoxy-Reinforced Polyaramid Fibers. J. Nanomater. 2022, 2022, 3758212. https://doi.org/10.1155/2022/3758212.Search in Google Scholar

30. Murali, B.; Karthik, K.; Marotrao, S. S.; Laxmaiah, G.; Yadav, A. S.; Prasanth, I. S. N. V. R.; Abbas, M. Mechanical and Dynamic Mechanical Properties of Hybrid Kevlar/Natural Fiber Composites. Mater. Res. Express 2023, 10, 105305. https://doi.org/10.1088/2053-1591/ad02e1.Search in Google Scholar

31. ASTM D638-10 Standard Test Method for Tensile Properties of Plastics; ASTM International: West Conshohocken, PA, 2010.Search in Google Scholar

32. ASTM D790-07 Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials; ASTM International: West Conshohocken, PA, 2007.Search in Google Scholar

33. Kundalwal, S. I.; Rathi, A. Improved Mechanical and Viscoelastic Properties of CNT-Composites Fabricated Using an Innovative Ultrasonic Dual Mixing Technique. J. Mech. Behav. Mater. 2020, 29, 77–85. https://doi.org/10.1515/jmbm-2020-0008.Search in Google Scholar

34. Demircan, Ö.; Uzunoğlu, F. B.; Ansaroudi, N. R. Influence of Multi-Walled Carbon Nanotubes on Tensile and Flexural Properties of Polyamide 66/Short Glass Fiber Composites. Res. Eng. Struct. Mater. 2022. https://doi.org/10.17515/resm2022.443ma0607.Search in Google Scholar

35. Fu, S. Y.; Feng, X. Q.; Lauke, B.; Mai, Y. W. Effects of Particle Size, Particle/Matrix Interface Adhesion and Particle Loading on Mechanical Properties of Particulate–Polymer Composites. Compos. Part B Eng. 2008, 39, 933–961. https://doi.org/10.1016/j.compositesb.2008.01.002.Search in Google Scholar

36. Panchagnula, K. K.; Kuppan, P. Improvement in the Mechanical Properties of Neat Gfrps with Multi-Walled Cnts. J. Mater. Res. Technol. 2019, 8, 366–376. https://doi.org/10.1016/j.jmrt.2018.02.009.Search in Google Scholar

37. Yip, M. C.; Lin, Y. C.; Wu, C. L. Effect of Multi-Walled Carbon Nanotubes Addition on Mechanical Properties of Polymer Composites Laminate. Polym. Polym. Compos. 2011, 19, 131–140. https://doi.org/10.1177/0967391111019002-313.Search in Google Scholar

38. Rathore, D. K.; Prusty, R. K.; Kumar, D. S.; Ray, B. C. Mechanical Performance of CNT-Filled Glass Fiber/Epoxy Composite in In-situ Elevated Temperature Environments Emphasizing the Role of CNT Content. Compos. Part A Appl. Sci. Manuf. 2016, 84, 364–376. https://doi.org/10.1016/j.compositesa.2016.02.020.Search in Google Scholar

39. Ayatollahi, M. R.; Shadlou, S.; Shokrieh, M. M.; Chitsazzadeh, M. Effect of Multi-Walled Carbon Nanotube Aspect Ratio on Mechanical and Electrical Properties of Epoxy-Based Nanocomposites. Polym. Test. 2011, 30, 548–556. https://doi.org/10.1016/j.polymertesting.2011.04.008.Search in Google Scholar

40. Pinho, S. T.; Dávila, C. G.; Camanho, P. P.; Iannucci, L.; Robinson, P. Failure Models and Criteria for FRP Under in-Plane or Three-Dimensional Stress States Including Shear Non-linearity. NASA/TM-2005-213530; 2005.Search in Google Scholar

Received: 2024-11-25
Accepted: 2025-03-14
Published Online: 2025-07-25
Published in Print: 2025-08-26

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 20.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2024-0316/html
Scroll to top button