Home Technology Assessment of material extrusion process parameters on the surface quality enhancement of 3D printed PLA specimens
Article
Licensed
Unlicensed Requires Authentication

Assessment of material extrusion process parameters on the surface quality enhancement of 3D printed PLA specimens

  • Sangeeth Kumar Madheswaran ORCID logo EMAIL logo , K. Venkatesh Raja and R. Venkatachalam
Published/Copyright: August 19, 2025

Abstract

This study investigates both pre-process and post-process treatments aimed at improving the surface quality of polylactic acid (PLA) parts produced via material extrusion, commonly known as fused deposition modelling (FDM). FDM inherently produces visible layer lines, resulting in rough surface finishes, particularly in applications like virtual surgical planning (VSP). To address these challenges, the research focuses on optimizing pre-process parameters and evaluating post-process treatments, including thermal annealing and chemical vapor treatments using ethyl acetate (EA) and isopropyl alcohol (IPA). In the pre-processing stage, various printing parameters, such as layer height, nozzle temperature, and outer wall speed, are adjusted to improve surface finish. A 0.1 mm layer height yields the lowest surface roughness (8.523 µm), though it requires longer production times. In contrast, a 0.2 mm layer height significantly reduces printing time (43 min) but results in a slightly higher surface roughness (10.246 µm). Mid-range parameters provide an effective balance between surface quality and production speed. Post-process treatments further enhance surface smoothness. Thermal annealing at 125 °C for up to 4 h significantly reduces surface roughness across all layer heights, eliminating visible layer lines, although dimensional shrinkage occurs. EA vapor treatment shows a marked reduction in roughness, especially for finer layers (0.1 mm), but requires a longer processing time of 83 min. IPA vapor treatment also improves surface finish but is less efficient compared to EA. In conclusion, thermal annealing is recommended for applications where speed is prioritized over dimensional accuracy, while EA vapor treatment is better suited for applications requiring high surface precision despite longer treatment times. Combining optimized pre-process parameters with effective post-process treatments significantly enhances the surface quality of FDM-printed parts.


Corresponding author: Sangeeth Kumar Madheswaran, Department of Mechanical Engineering, Sona College of Technology, Salem, 636005 Tamil Nadu, India, E-mail:

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission. Sangeeth Kumar M: Conceptualization, Methodology, Investigation, Writing–Original Draft. Venkatesh Raja K: Supervision, Writing–Review & Editing, Venkatachalam R: Validation.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The author states no conflict of interest.

  6. Research funding: None declared.

  7. Data availability: Not applicable.

References

1. Lavecchia, F.; Guerra, M. G.; Galantucci, L. M. Chemical Vapor Treatment to Improve Surface Fnish of 3D Printed Polylactic Acid (PLA) Parts Realized by Fused Flament Fabrication. Prog. Addit. Manuf. 2021, 7, 62–75. https://doi.org/10.1007/s40964-021-00213-2.Search in Google Scholar

2. Mathew, A.; Kishore, S. R.; Tomy, A. T.; Sugavaneswaran, M.; Scholz, S. G.; Elkaseer, A.; Wilson, V. H.; Rajan, A. J. Vapour Polishing of Fused Deposition Modelling (FDM) Parts: a Critical Review of Different Techniques, and Subsequent Surface Finish and Mechanical Properties of the Post-processed 3D-Printed Parts. Prog. Addit. Manuf. 2023, 8, 1161–1178. https://doi.org/10.1007/s40964-022-00391-7.Search in Google Scholar

3. Pérez, M.; Medina-Sánchez, G.; García-Collado, A.; Gupta, M.; Carou, D. Surface Quality Enhancement of Fused Deposition Modeling (FDM) Printed Samples Based on the Selection of Critical Printing Parameters. Materials 2018, 11, 1382. https://doi.org/10.3390/ma11081382.Search in Google Scholar PubMed PubMed Central

4. Mushtaq, R. T.; Iqbal, A.; Wang, Y.; Khan, A. M.; Petra, M. I. Advancing PLA 3D Printing with Laser Polishing: Improving Mechanical Strength, Sustainability, and Surface Quality. Crystals 2023, 13 (4), 626. https://doi.org/10.3390/cryst13040626.Search in Google Scholar

5. Yadav, K.; Rohilla, S.; Ali, A.; Yadav, M.; Chhabra, D. Effect of Speed, Acceleration, and Jerk on Surface Roughness of FDM-Fabricated Parts. J. Mater. Eng. Perform. 2023, 33, 6998–7007. https://doi.org/10.1007/s11665-023-08476-2.Search in Google Scholar

6. Ayrilmis, N. Effect of Layer Thickness on Surface Properties of 3D Printed Materials Produced from Wood Flour/PLA Filament. Polym. Test. 2018, 71, 163–166. https://doi.org/10.1016/j.polymertesting.2018.09.009.Search in Google Scholar

7. Yadav, A.; Prakash, B. P.; Dileep, K. S.; Rao, S. A.; Kumar, G. B. V. An Experimental Examination on Surface Finish of FDM 3D Printed Parts. Mater. Today Proc. 2023, 115, 148–155. https://doi.org/10.1016/j.matpr.2023.07.088.Search in Google Scholar

8. Maidin, S.; Nor, N. M. N. H.; Rajendran, T. K.; Muhammad, A. H. Comparative Analysis of Acrylonitrile Butadiene Styrene and Polylactic Acid Samples’ Mechanical Properties Printed in Vacuum. Addit. Manuf. 2023, 67, 103485. https://doi.org/10.1016/j.addma.2023.103485.Search in Google Scholar

9. Cao, L.; Xiao, J.; Kim, J. K.; Zhang, X. Effect of Post-process Treatments on Mechanical Properties and Surface Characteristics of 3D Printed Short Glass Fiber Reinforced PLA/TPU Using the FDM Process. CIRP J. Manuf. Sci. Technol. 2023, 41, 135–143. https://doi.org/10.1016/j.cirpj.2022.12.008.Search in Google Scholar

10. Jasim, M. F.; Huayier, A. F.; Abbas, T. F. Investigation of the Effect of Surface Roughness and Dimensional Accuracy on the Layer Thickness of PLA Parts Produced by the FDM Process. Prog. Eng. Technol. 2023, 183, 19–29. https://doi.org/10.1007/978-3-031-29348-1_3.Search in Google Scholar

11. Han, P.; Zhang, S.; Yang, Z.; Riyad, M. F.; Popa, D. O.; Hsu, K. In-Process Orbiting Laser-Assisted Technique for the Surface Finish in Material Extrusion-Based 3D Printing. Polymers 2023, 15 (9), 2221. https://doi.org/10.3390/polym15092221.Search in Google Scholar PubMed PubMed Central

12. Karamimoghadam, M.; Dezaki, M. L.; Zolfagharian, A.; Bodaghi, M. Influence of Post-processing CO2 Laser Cutting and FFF 3D Printing Parameters on the Surface Morphology of PLAs: Statistical Modelling and RSM Optimisation. Int. J. Lightweight Mater. Manuf. 2023, 6 (2), 285–295. https://doi.org/10.1016/j.ijlmm.2023.01.004.Search in Google Scholar

13. Huang, M.; Jin, S.; Tang, Z.; Chen, Y.; Qin, Y. A Method for Predicting Surface Finish of Polylactic Acid Parts Printed Using Fused Deposition Modeling. Process 2023, 11 (6), 1820. https://doi.org/10.3390/pr11061820.Search in Google Scholar

14. Nguyen, T. T.; Tran, V. T.; Pham, T. H. N.; Nguyen, V.-T.; Thanh, N. C.; Nguyen Thi, H. M.; Duy, N. V. A.; Nguyen, V. T. T. Influences of Material Selection, Infill Ratio, and Layer Height in the 3D Printing Cavity Process on the Surface Roughness of Printed Patterns and Casted Products in Investment Casting. Micromachines 2023, 14 (2), 395. https://doi.org/10.3390/mi14020395.Search in Google Scholar PubMed PubMed Central

15. Mukhtarkhanov, M.; Shehab, E.; Araby, S.; Ali, M. H. Experimental Study of Wax-Material Support Structure for Fused Deposition Modeling Printed Parts with Overhanging Sections. Int. J. Lightweight Mater. Manuf. 2023, 6 (4), 534–542. https://doi.org/10.1016/j.ijlmm.2023.04.002.Search in Google Scholar

16. Prajapati, M.; Rimza, S. An Experimental Study of Surface Improvement in FDM Parts by Vapor Treatment Process. J. Mech. Eng. Res. 2020, 3 (1). https://doi.org/10.30564/jmer.v3i1.1681.Search in Google Scholar

17. Mani, M.; Karthikeyan, A. G.; Kalaiselvan, K.; Muthusamy, P.; Muruganandhan, P. Optimization of FDM 3-D Printer Process Parameters for Surface Roughness and Mechanical Properties Using PLA Material. Mater. Today Proc. 2022, 66, 1926–1931. https://doi.org/10.1016/j.matpr.2022.05.422.Search in Google Scholar

18. Shirmohammadi, M.; Goushchi, S. J.; Keshtiban, P. M. Optimization of 3D Printing Process Parameters to Minimize Surface Roughness with Hybrid Artificial Neural Network Model and Particle Swarm Algorithm. Prog. Addit. Manuf. 2021, 6 (4), 199–215. https://doi.org/10.1007/s40964-021-00166-6.Search in Google Scholar

19. Altan, M.; Gumus, B.; Kahraman, Y. Effects of Process Parameters on the Quality of PLA Products Fabricated by Fused Deposition Modeling (FDM): Surface Roughness and Tensile Strength. Mater. Test. 2018, 60, 471–477. https://doi.org/10.3139/120.111178.Search in Google Scholar

20. Yunus, M.; Alsoufi, M. S. Effect of Raster Inclinations and Part Positions on Mechanical Properties, Surface Roughness and Manufacturing Price of Printed Parts Produced by Fused Deposition Method. J. Mech. Eng. Sci. 2020, 14 (4), 7416–7423. https://doi.org/10.15282/jmes.14.4.2020.10.0584.Search in Google Scholar

21. Pulipaka, A.; Gide, K. M.; Beheshti, A.; Bagheri, Z. S. Effect of 3D Printing Process Parameters on Surface and Mechanical Properties of FFF-Printed PEEK. J. Manuf. Process. 2023, 85, 368–386. https://doi.org/10.1016/j.jmapro.2022.11.057.Search in Google Scholar

22. Kadhum, A. H.; Al-Zubaidi, S.; Abed AlKareem, S. S. Optimization of Mechanical Properties and Surface Characteristics of PLA+ 3D Printing Materials. Int. J. Chem. Eng. 2023, 2023, 1–15. https://doi.org/10.1155/2023/8887905.Search in Google Scholar

23. Maidin, S.; Rajendran, T. K.; Nor, N. M. N. H.; Sheng, Y. Y.; Ismail, S.; Muhammad, A. H. Advances in Multi-Material AM. Heliyon 2023, 9 (6), e17053. https://doi.org/10.1016/j.heliyon.2023.e17053.Search in Google Scholar PubMed PubMed Central

24. Altan, M.; Eryildiz, M.; Gumus, B.; Kahraman, Y. Effect of Ultrasonic Vibration on the Mechanical Properties of 3D Printed Acrylonitrile Butadiene Styrene and Polylactic Acid Samples. Mater. Test. 2018, 6 (5), 471–477. https://doi.org/10.3139/120.111178.Search in Google Scholar

25. Chueca de Bruijn, A.; Gómez-Gras, G.; Perez, M. A. A Comparative Analysis of Chemical, Thermal, and Mechanical Post-Process of Fused Filament Fabricated Polyetherimide Parts for Surface Quality Enhancement. Materials 2021, 14 (19), 5880. https://doi.org/10.3390/ma14195880.Search in Google Scholar PubMed PubMed Central

26. Yuvaraj, S.; Venkatesh Raja, K.; Bakkiyaraj, M.; Malayalamurthi, R.; Magibalan, S.; Thavasilingam, K.; Muralidharan, K. Experimental Assessment on the Contact Characteristics of 3D Printed Flexible Poly Lactic Acid (PLA) Soft Fingertips. Int. J. Mater. Res. 2022, 113, 1033–1044. https://doi.org/10.1515/ijmr-2022-0179.Search in Google Scholar

27. James, J.; Hilda, J.; Lenin, A. Study of Tribological and Mechanical Properties of Composite Reinforced with Tungsten Carbide. AIP Conf. Proc. 2023, 2548 (1), 050007. https://doi.org/10.1063/5.0121012.Search in Google Scholar

28. Vestnik, S. Wear Behaviour of a Cu-Ni-Sn Hybrid Composite Reinforced with B4C Prepared by Powder Metallurgy Technique. J. Mech. Eng. 2023, 69, 5–6. https://doi.org/10.5545/sv-jme.2022.423.Search in Google Scholar

29. Lenin, A. H.; Kumaradhas, P.; Sivapragash, M.; Vettivel, S. C. Study on Wear Behaviour Characteristics of ZrO2 and ZrN Coated AZ91D Mg Alloy. J. Min. Metall. Sect. B-Metall. 2023, 59 (2), 279–286. https://doi.org/10.2298/JMMB230323024A.Search in Google Scholar

30. Vemula, A. M.; Reddy, G. C. M.; Hussain, M. M.; Kumar, A.; Kumar, N.; Allasi, H. L. Post-surface Processing and Virtual Simulation Analysis of Ball-Punch Test on CP-Ti Material. Adv. Mater. Sci. Eng. 2022, 1–8. https://doi.org/10.1155/2022/5625427.Search in Google Scholar

31. Prabhakar, M. M.; Saravanan, A. K.; Lenin, A. H.; Leno, I. J.; Mayandi, K.; Ramalingam, P. S. A Short Review on 3D Printing Methods, Process Parameters and Materials. Mater. Today 2021, 45 (7), 6108–6114. https://doi.org/10.1016/j.matpr.2020.10.225.Search in Google Scholar

32. Kechagias, J. D. Effects of Thermomechanical Parameters on Surface Texture in Filament Materials Extrusion: Outlook and Trends. F1000Research 2024, 13, 1039. https://doi.org/10.12688/f1000research.144965.1.Search in Google Scholar PubMed PubMed Central

33. Kechagias, J. D. Surface Roughness Assessment of ABS and PLA Filament 3D Printing Parts: Structural Parameters Experimentation and Semi-empirical Modelling. Int. J. Adv. Manuf. Technol. 2024, 134, 1935–1946. https://doi.org/10.1007/s00170-024-14232-0.Search in Google Scholar

34. Kechagias, J. D.; Zaoutsos, S. P. An Investigation of the Effects of Ironing Parameters on the Surface and Compression Properties of Material Extrusion Components Utilizing a Hybrid-Modeling Experimental Approach. Prog. Addit. Manuf. 2023, 9, 1683–1695. https://doi.org/10.1007/s40964-023-00536-2.Search in Google Scholar

35. Kechagias, J. D.; Zaoutsos, S. P. Optimising Fused Filament Fabrication Surface Roughness for a Dental Implant. Mater. Manuf. Process. 2023, 38 (8), 954–959. https://doi.org/10.1080/10426914.2023.2176870.Search in Google Scholar

36. Kechagias, J. D.; Ninikas, K.; Vakouftsi, F.; Fountas, N. A.; Palanisamy, S.; Vaxevanidis, N. M. Optimization of Laser Beam Parameters during Processing of ASA 3D-Printed Plates. Int. J. Adv. Manuf. Technol. 2024, 130, 527–539. https://doi.org/10.1007/s00170-023-12711-4.Search in Google Scholar

37. Kechagias, J. D.; Fountas, N. A.; Ninikas, K.; Vaxevanidis, N. M. Kerf Geometry and Surface Roughness Optimization in CO2 Laser Processing of FFF Plates Utilizing Neural Networks and Genetic Algorithms Approaches. J. Manuf. Mater. Process. 2023, 7 (2), 77. https://doi.org/10.3390/jmmp7020077.Search in Google Scholar

38. Madheswaran, S. K.; Raja, K. V. Assessment on the Influence of FDM Process Parameters on the Mechanical Properties of PLA Samples. Int. J. Mater. Res. 2024, 115 (9), 752–766. https://doi.org/10.1515/ijmr-2023-0336.Search in Google Scholar

Received: 2024-10-21
Accepted: 2025-03-28
Published Online: 2025-08-19
Published in Print: 2025-08-26

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 13.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2024-0283/html
Scroll to top button