Home Influence of Alclad layers on mechanical properties of friction stir welded 2024-T3 aluminium alloy thin sheets
Article
Licensed
Unlicensed Requires Authentication

Influence of Alclad layers on mechanical properties of friction stir welded 2024-T3 aluminium alloy thin sheets

  • Camille Wojciechowski ORCID logo EMAIL logo , Christine Boher , Laurent Dubourg and Alexia Grosso
Published/Copyright: August 4, 2025
Become an author with De Gruyter Brill

Abstract

Alclad sheets are used in aeronautics to resist corrosion. This paper presents the investigation of the effect of the Alclad on the mechanical properties of thin friction stir welds of 2024-T3 aluminium alloy (3 mm and 1 mm). The friction stir welding process is carried out on sheet metal without any surface preparation. Tensile tests, micro-hardness measurements, optical microscopy and scanning electron microscopy observations are performed to identify the behaviour of the friction stir welds at local and macroscopic scales. The evolution of micro-hardness through the welds associated with literature results reliably describe precipitates in each area of the welds. Tensile test results combined with micrographic observations reveal that the Alclad layer is introduced by the pin into the alloy in a pointed shape. The weld fractures are clearly located in Alclad insertion zones. Independently of the state of the precipitates due to the friction stir welding parameters, Alclad insertions are responsible for the decrease in ductility of the welds.


Corresponding author: Camille Wojciechowski, Research Engineer Avantis Project 12 Rue de Caulet, 31300 Toulouse, France; Institut Clément Ader (ICA), Université de Toulouse, CNRS, IMT Mines Albi, INSA, UPS, ISAE, Campus Jarlard, 81000 Albi, France; and AVANTIS PROJECT, Aéroparc, 12 Rue de Caulet, 31300 Toulouse, France, E-mail:
Camille Wojciechowski and Christine Boher share senior authorship.

Acknowledgments

The project is realized in direct collaboration with STIRWELD, AVANTIS PROJECT and ARMINES/ICA. STIRWELD team is acknowledged for the design and manufacturing of the FSW head and AVANTIS PROJECT team is acknowledged for the realization of the welds in this project.

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: The project leading to this application has received funding from the Clean Sky 2 Joint Undertaking under the European Union’s Horizon 2020 research and innovation program under grant agreement No 831833.

  7. Data availability: Not applicable.

References

1. Sasabe, S Welding of 2000 Series Aluminium Alloy Materials. Weld. Int. 2012, 26 (5), 339–350; https://doi.org/10.1080/09507116.2011.590669.Search in Google Scholar

2. Mishra, R. S.; Ma, Z. Y. Friction Stir Welding and Processing. Mater. Sci. Eng. R. Rep 2005, 50 (1–2), 1–78; https://doi.org/10.1016/j.mser.2005.07.001.Search in Google Scholar

3. Heidarzadeh, A.; Mironov, S.; Kaibyshev, R.; Çam, G.; Simar, A.; Gerlich, A.; Khodabakhshi, F.; Mostafaei, A.; Field, D.; Robson, J.; Deschamps, A.; Withers, P. Friction Stir Welding/Processing of Metals and Alloys: a Comprehensive Review on Microstructural Evolution. Prog. Mater. Sci. 2021, 117, 100752; https://doi.org/10.1016/j.pmatsci.2020.100752.Search in Google Scholar

4. Prangnell, P. B; Heason, C. P. Grain Structure Formation During Friction Stir Welding Observed by the ‘Stop Action Technique’. Acta Mater. 2005, 53 (11), 3179–3192; https://doi.org/10.1016/j.actamat.2005.03.044.Search in Google Scholar

5. Genevois, C.; Deschamps, A.; Denquin, A.; Doisneaucottignies, B. Quantitative Investigation of Precipitation and Mechanical Behaviour for AA2024 Friction Stir Welds. Acta Mater. 2005, 53 (8), 2447–2458; https://doi.org/10.1016/j.actamat.2005.02.007.Search in Google Scholar

6. Bousquet, E.; Poulon-Quintin, A.; Puiggali, M.; Devos, O.; Touzet, M. Relationship Between Microstructure, Microhardness and Corrosion Sensitivity of an AA 2024-T3 Friction Stir Welded Joint. Corros. Sci. 2011, 53 (9), 3026–3034; https://doi.org/10.1016/j.corsci.2011.05.049.Search in Google Scholar

7. Fu, R. D.; Zhang, J. F.; Li, Y. J.; Kang, J.; Liu, H. J.; Zhang, F. C. Effect of Welding Heat Input and Post-welding Natural Aging on Hardness of Stir Zone for Friction stir-welded 2024-T3 Aluminum Alloy Thin-Sheet. Mater. Sci. Eng. A 2013, 559, 319–324; https://doi.org/10.1016/j.msea.2012.08.105.Search in Google Scholar

8. Dixit, V.; Mishra, R. S.; Lederich, R. J.; Talwar, R. Effect of Initial Temper on Mechanical Properties of Friction Stir Welded Al-2024 Alloy. Sci. Technol. Weld. Join 2007, 12 (4), 334–340; https://doi.org/10.1179/174329307X197593.Search in Google Scholar

9. Su, J. Q.; Nelson, T. W.; Mishra, R.; Mahoney, M. Microstructural Investigation of Friction Stir Welded 7050-T651 Aluminium. Acta Mater. 2003, 51 (3), 713–729; https://doi.org/10.1016/S1359-6454-02-00449-4.Search in Google Scholar

10. Fuller, C. B.; Mahoney, M. W.; Calabrese, M.; Micona, L. Evolution of Microstructure and Mechanical Properties in Naturally Aged 7050 and 7075 Al Friction Stir Welds. Mater. Sci. Eng. A 2010, 527 (9), 2233–2240; https://doi.org/10.1016/j.msea.2009.11.057.Search in Google Scholar

11. Zhang, Z.; Xiao, B. L.; Wang, D.; Ma, Z. Y. Effect of Alclad Layer on Material Flow and Defect Formation in Friction-Stir-Welded 2024 Aluminum Alloy. Metall. Mater. Trans. A 2011, 42 (6), 1717–1726; https://doi.org/10.1007/s11661-010-0545-3.Search in Google Scholar

12. Verma, M.; Saha, P. Effect of Micro-grooves Featured Tool and their Depths on Dissimilar Micro-Friction Stir Welding (Μfsw) of Aluminum Alloys: a Study of Process Responses and Weld Characteristics. Mater. Charact. 2023, 196, 112614; https://doi.org/10.1016/j.matchar.2022.112614.Search in Google Scholar

13. Robitaille, B.; Provencher, P. R.; St-Georges, L.; Brochu, M. Mechanical Properties of 2024-T3 AlClad Aluminum FSW Lap Joints and Impact of Surface Preparation. Int. J. Fatigue 2021, 143, 105979; https://doi.org/10.1016/j.ijfatigue.2020.105979.Search in Google Scholar

14. Zhou, C.; Yang, X.; Luan, G. Effect of Oxide Array on the Fatigue Property of Friction Stir Welds. Scr. Mater. 2006, 54 (8), 1515–1520; https://doi.org/10.1016/j.scriptamat.2005.12.036.Search in Google Scholar

15. Di, S.; Yang, X.; Luan, G.; Jian, B. Comparative Study on Fatigue Properties Between AA2024-T4 Friction Stir Welds and Base Materials. Mater. Sci. Eng. A 2006, 435–436, 389–395; https://doi.org/10.1016/j.msea.2006.07.009.Search in Google Scholar

16. Zhang, Z.; Xiao, B. L.; Ma, Z. Y. Effect of Segregation of Secondary Phase Particles and “S” Line on Tensile Fracture Behavior of Friction Stir-Welded 2024Al-T351 Joints. Metall. Mater. Trans. A 2013, 44 (9), 4081–4097; https://doi.org/10.1007/s11661-013-1778-8.Search in Google Scholar

17. Niu, P.; Li, W.; Zhang, Z.; Wang, F.; Feng, Y.; Fu, M. Significant Effect of Oxide on Mechanical Properties of Friction-Stir-Welded AA2024 Joints. Sci. Technol. Weld Join 2017, 22 (1), 66–70; https://doi.org/10.1080/13621718.2016.1188514.Search in Google Scholar

18. Sato, Y. S.; Takauchi, H.; Park, S. H. C.; Kokawa, H. Characteristics of the kissing-bond in Friction Stir Welded Al Alloy 1050. Mater. Sci. Eng. A 2005, 405 (1–2), 333–338; https://doi.org/10.1016/j.msea.2005.06.008.Search in Google Scholar

19. Ahmed, S.; Saha, P. Development and Testing of Fixtures for Friction Stir Welding of Thin Aluminium Sheets. J. Mater. Process. Technol. 2018, 252, 242–248; https://doi.org/10.1016/j.jmatprotec.2017.09.034.Search in Google Scholar

20. Wang, S. C.; Starink, M. J. Precipitates and Intermetallic Phases in Precipitation Hardening Al–Cu–Mg–(Li) Based Alloys. Int. Mater. Rev. 2005, 50 (4), 193–215; https://doi.org/10.1179/174328005X14357.Search in Google Scholar

21. Dubost, B.; Sainfort, P. Durcissement par précipitation des Alliages d’aluminium. Tech Ing Matér Métalliques 1991, 40; https://doi.org/10.51257/a-v2-m4340.Search in Google Scholar

22. Mishra, R. S.; Mahoney, M. W. Friction Stir Welding and Processing; ASM International, 2007. https://books.google.fr/books?id=JW2l2L-UYS4C.Search in Google Scholar

23. Liu, H. J.; Fujii, H.; Maeda, M.; Nogi, K. Tensile Properties and Fracture Locations of friction-stir-welded Joints of 2017-T351 Aluminum Alloy. J. Mater. Process. Technol. 2003, 142 (3), 692–696; https://doi.org/10.1016/S0924-0136-03-00806-9.Search in Google Scholar

24. Scialpi, A.; De Giorgi, M.; De Filippis, L. A. C.; Nobile, R.; Panella, F. W. Mechanical Analysis of Ultra-thin Friction Stir Welding Joined Sheets with Dissimilar and Similar Materials. Mater. Des. 2008, 29 (5), 928–936; https://doi.org/10.1016/j.matdes.2007.04.006.Search in Google Scholar

Received: 2021-11-10
Accepted: 2025-03-05
Published Online: 2025-08-04
Published in Print: 2025-08-26

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 20.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2021-8643/html
Scroll to top button