Home Technology Evaluation of the wear behavior of silicon carbide−calcium oxide/zirconium oxide composite material
Article
Licensed
Unlicensed Requires Authentication

Evaluation of the wear behavior of silicon carbide−calcium oxide/zirconium oxide composite material

  • Mohsen Zandi , Sahebali Manafi EMAIL logo and Mohammad Bagher Limooei ORCID logo EMAIL logo
Published/Copyright: August 19, 2025

Abstract

This study examined the microstructural features and mechanical properties of silicon carbide−calcium oxide/zirconium oxide (SiC–CaO/ZrO2) refractories with various compositions. The effect of cold pressing (CP) and cold isostatic pressing (CIP) methods on prepared refractories’ hardness and wear resistance were also investigated. It was found that incorporating SiC and CaO in ZrO2 leads to the formation of zirconium silicate (ZrSiO4) and calcium zirconate (CaZrO3) during the sintering stage. The addition of CaO and the formation of CaZrO3 decreased the hardness, thus reducing the wear resistance of the refractory. On the other hand, SiC addition and the formation of ZrSiO4 facilitated crack propagation due to the precipitation hardening of the material and stress concentration due to the ZrO2 phase transformation. The hardening effect of SiC–ZrO2 refractory resulted in hardness and wear resistance enhancement. It was also revealed that the application of pressure in an isostatic pressing can improve the mechanical properties of the refractories, which are used as lining materials in the steel manufacturing industry.

Keywords: zirconia; SiC; CaO; wear; abrasion

Corresponding authors: Mohammad Bagher Limooei, Department of Materials Science and Engineering, Ayatollah Amoli Islamic Azad University, 4616816548, Amol, Iran, E-mail: ; and Sahebali Manafi, Department of Materials Engineering, Shahrood Branch, Islamic Azad University, Shahrood, Iran, E-mail:

Acknowledgments

The authors are grateful for the generous assistance from Refractory Azarshahab Tabriz and Shahrood Azad University in carrying out practical tests and theoretical studies.

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: Mohsen Zandi: Research study design, data collection, data analysis and interpretation, preparing a draft of the research article, careful/detailed review and revision of the draft article. Sahebali Manafi: Analysis and interpretation of data, review and approval of the final version of the article. Mohamad Bagher Limooei: Analysis and interpretation of data, review and approval of the final version of the article, detailed review and revision.

  4. Use of Large Language Models, AI and Machine Learning Tools: Not applicable.

  5. Conflict of interest: None declared.

  6. Research funding: None declared.

  7. Data availability: Not applicable.

References

1. Ghasemi-Kahrizsangi, S.; Karamian, E.; Gheisari Dehsheikh, H.; Ghasemi-Kahrizsangi, A. A Review on Recent Advances on Magnesia-Doloma Refractories by Nano-Technology. J. Water Environ. Nanotechnol. 2017, 2 (3), 206–222. https://doi.org/10.22090/jwent.2017.03.008.Search in Google Scholar

2. Li, Z.; Zhang, S.; Lee, W. E. Improving the Hydration Resistance of Lime-Based Refractory Materials. Int. Mater. Rev. 2008, 53 (1), 1–20. https://doi.org/10.1179/174328007X212508.Search in Google Scholar

3. Nadachowski, F. Refractories Based on Lime: Development and Perspectives. Ceramurg. Int. 1976, 2 (2), 55–61. https://doi.org/10.1016/0390-5519(76)90046-6.Search in Google Scholar

4. Chen, L.; Malfliet, A.; Jones, P.T.; Blanpain, B.; Guo, M. Influence of Al 2 O 3 Level in CaO-SiO 2-MgO-Al 2 O 3 Refining Slags on Slag/Magnesia-Doloma Refractory Interactions. Metall. Mater. Trans. B 2019, 50, 1822–1829. https://doi.org/10.1007/s11663-019-01596-y.Search in Google Scholar

5. Kashaninia, F.; Sarpoolaky, H.; Naghizadeh, R.; Bagheri, A. R.; Zamanipour, M. Improving Hydration Resistance of Magnesia-Doloma Refractories by Iron Oxide Addition. Iran J. Mater. Sci. Eng. 2011, 8 (4), 34–40.Search in Google Scholar

6. Ghasemi-Kahrizsangi, S.; Dehsheikh, H. G.; Karamian, E.; Nemati, A. A Comparative Evaluation of the Additional Impact of Nanometer-Sized Tetravalent Oxides on the Performance of Doloma-Magnesia Ceramic Refractories. Ceram. Int. 2018, 44 (2), 2058–2064. https://doi.org/10.1016/j.ceramint.2017.10.151.Search in Google Scholar

7. Chen, Q.; Zhu, T.; Li, Y.; Cheng, Y.; Liao, N.; Pan, L.; Liang, X.; Wang, Q.; Sang, S. Enhanced Performance of Low-Carbon MgO–C Refractories with Nano-Sized ZrO2-Al2O3 Composite Powder. Ceram. Int. 2021, 47 (14), 20178–20186. https://doi.org/10.1016/j.ceramint.2021.04.024.Search in Google Scholar

8. Xu, S.; Xu, Y.; Liu, Y.; Fang, M.; Wu, X.; Min, X.; Zhang, X.; Huang, Z. Fabrication and Abrasive Wear Behavior of ZrO2-SiC-Al2O3 Ceramic. Ceram. Int. 2017, 43 (17), 15060–15067. https://doi.org/10.1016/j.ceramint.2017.08.032.Search in Google Scholar

9. Wu, Z. L.; Fang, M. H.; Huang, Z. H.; Liu, Y. G.; Xu, Y. G.; Wu, X. W.; Liu, B. L. Effects of CaO Additives on the Phase Evolution of ZrO2-SiC Composites from Zircon by Carbothermal Reduction. Key Eng. Mater. 2014, 602, 105–109. https://doi.org/10.4028/www.scientific.net/KEM.602-603.105.Search in Google Scholar

10. Hafizoğlu, M. A.; Akkuş, A.; Boyraz, T. Fabrication and Characterization of Mullite Reinforced CaO Added ZrO2 Ceramics. Avrupa Bilim ve Teknol Derg. 2021 (28 Special Issue), 1137–1143. https://doi.org/10.47495/okufbed.1033640.Search in Google Scholar

11. Nath, S.; Sinha, N.; Basu, B. Microstructure, Mechanical and Tribological Properties of Microwave Sintered Calcia-Doped Zirconia for Biomedical Applications. Ceram. Int. 2008, 34 (6), 1509–1520. https://doi.org/10.1016/j.ceramint.2007.04.021.Search in Google Scholar

12. Ma, B.; Yu, J. Phase Composition of SiC-ZrO2 Composite Materials Synthesized from Zircon Doped with La2O3. J. Rare Earths 2009, 27 (5), 806–810. https://doi.org/10.1016/S1002-0721(08)60339-7.Search in Google Scholar

13. Zuo, H.; Wang, C.; Liu, Y. Dissolution Behavior of a Novel Al2O3-SiC-SiO2-C Composite Refractory in Blast Furnace Slag. Ceram. Int. 2017, 43 (9), 7080–7087. https://doi.org/10.1016/j.ceramint.2017.02.138.Search in Google Scholar

14. Lee, J. K.; Choi, H. S.; Lee, S. J. Effect of Fe 2 O 3 Additions on the Hydration Resistance of Cao. J. Ceram. Process Res. 2012, 13 (5), 646–650.Search in Google Scholar

15. Himpel, G.; Herrmann, M.; Höhn, S. Comparison of the High-Temperature Corrosion of Aluminium Nitride, Alumina, Magnesia and Zirconia Ceramics by Coal Ashes. Ceram. Int. 2015, 41 (7), 8288–8298. https://doi.org/10.1016/j.ceramint.2015.02.052.Search in Google Scholar

16. Kumar, A.; Khanna, R.; Spink, J.; Sahajwalla, V. Fundamental Investigations on the Corrosion of Zr O 2–C Refractories during Interaction with a Casting Mould Meniscus Slag. Steel Res. Int. 2014, 85 (7), 1185–1193. https://doi.org/10.1002/srin.201300336.Search in Google Scholar

17. Min’ko, N. I.; Nartsev, V. M. Effect of the Glass Composition on Corrosion of Zirconium Containing Refractories in a Glass-Melting Furnace (A Review). Glass Ceram. 2007, 64, 335–342. https://doi.org/10.1007/s10717-007-0084-6.Search in Google Scholar

18. Chen, M.; Wang, N.; Yu, J.; Yamaguchi, A. Oxidation Protection of CaO–ZrO2–C Refractories by Addition of SiC. Ceram. Int. 2007, 33 (8), 1585–1589. https://doi.org/10.1016/j.ceramint.2006.07.004.Search in Google Scholar

19. Liu, S. Y.; Wang, Y.; Zhou, C.; Pan, Z. Y. Mechanical Properties and Tribological Behavior of Alumina/zirconia Composites Modified with SiC and Plasma Treatment. Wear 2015, 332, 885–890. https://doi.org/10.1016/j.wear.2015.01.036.Search in Google Scholar

20. Hu, Z.; Xu, Y.; Li, Y.; Li, Z.; Nath, M.; Sang, S.; Wang, Q.; Zhu, T.; Liao, N.; Liang, X.; Andreev, K. Role of ZrO2 in Sintering and Mechanical Properties of CaO Containing Magnesia from Cryptocrystalline Magnesite. Ceram. Int. 2022, 48 (5), 6236–6244. https://doi.org/10.1016/j.ceramint.2021.11.164.Search in Google Scholar

21. Akkus, A.; Boyraz, T. Investigation of Wear Properties of CaO, MgO Added Stabilized Zirconia Ceramics Produced by Different Pressing Methods. J. Ceram. Process Res. 2018, 19 (3), 249–252.Search in Google Scholar

22. Promakhov, V.; Buyakova, S.; Illavszky, V.; Kulkov, S.; Gomze, L. Thermal Expansion of Oxide Systems on the Basis of ZrO2. J. Silic. Based Compos. Mater. 2014, 3, 81–83; https://doi.org/10.14382/epitoanyag-jsbcm.2014.15.Search in Google Scholar

23. Li, Z.; Bradt, R. C. Thermal Expansion of the Cubic (3C) Polytype of SiC. J. Mater. Sci. 1986, 21 (12), 4366–4368. https://doi.org/10.1007/BF01106557.Search in Google Scholar

24. Claussen, N. Strengthening Strategies for ZrO2-Toughened Ceramics at High Temperatures. Mater. Sci. Eng. 1985, 71, 23–38. https://doi.org/10.1016/0025-5416(85)90203-4.Search in Google Scholar

25. Ding, Z.; Oberacker, R.; Thümmler, F. Microstructure and Mechanical Properties of Yttria-Stabilised Tetragonal Zirconia Polycrystals (Y-TZP) Containing Dispersed Silicon Carbide Particles. J. Eur. Ceram. Soc. 1993, 12 (5), 377–383. https://doi.org/10.1016/0955-2219(93)90007-E.Search in Google Scholar

26. Silva, A. P.; Booth, F.; Garrido, L.; Aglietti, E.; Pena, P.; Baudín, C. Young’s Modulus and Hardness of Multiphase CaZrO3-MgO Ceramics by Micro and Nanoindentation. J. Eur. Ceram. Soc. 2018, 38 (4), 2194–2201. https://doi.org/10.1016/j.jeurceramsoc.2017.11.007.Search in Google Scholar

27. Galusek, D.; Znášik, P.; Majling, J. The Influence of Cold Isostatic Pressing on Compaction and Properties of Mg-PSZ Ceramics. J. Mater. Sci. Lett. 1999, 18 (16), 1347–1351.10.1023/A:1006690500585Search in Google Scholar

28. Akimov, G. Y. Cold Isostatic Pressing as a Method for Fabricating Ceramic Products with High Physicomechanical Properties. Refract. Ind. Ceram. 1998, 39 (7), 283–287. https://doi.org/10.1007/BF02765082.Search in Google Scholar

29. Hu, Y.; Luo, F.; Duan, S.; Zhou, W.; Zhu, D. Mechanical and Dielectric Properties of SiCf/SiC Composites Fabricated by PIP Combined with CIP Process. Ceram. Int. 2016, 42 (6), 6800–6806. https://doi.org/10.1016/j.ceramint.2016.01.057.Search in Google Scholar

30. McColm, I. J. Ceramic Hardness; Springer Science & Business Media: Berlin, 2013.Search in Google Scholar

Received: 2023-11-21
Accepted: 2024-11-12
Published Online: 2025-08-19
Published in Print: 2025-08-26

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 13.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2023-0345/html
Scroll to top button