Startseite Effect of nitrogen content on the static recrystallization and precipitation behaviors of vanadium–titanium microalloyed steels
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Effect of nitrogen content on the static recrystallization and precipitation behaviors of vanadium–titanium microalloyed steels

  • Baochun Zhao EMAIL logo , Tan Zhao , Lei Huang und Junbo Li
Veröffentlicht/Copyright: 23. Mai 2024
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Double compression tests were performed on vanadium–titanium microalloyed steels with different nitrogen contents by using a Gleeble-3800 thermo-mechanical simulator to study the softening behaviors of the deformed austenite during different time intervals between the two passes. The static recrystallization fractions were calculated by the stress offset method and static recrystallization diagrams for the tested steels were obtained. The effects of deformation temperature and interval time on the softening behaviors were analyzed. Especially, the effect of nitrogen on the softening behaviors of the tested steels is discussed in detail. The results showed that the softening behaviors of the tested steels with various nitrogen contents are different. As far as the steel with low nitrogen content is concerned, the softening fraction increases monotonically with increasing time interval, and higher temperature can promote the static recrystallization. However, with more nitrogen added into vanadium–titanium microalloyed steel, precipitated particles of vanadium titanium carbonitride can be observed in the tested steel at the temperature of 850 °C or 800 °C, which leads to the formation of plateaus on the softening curves. An increase in nitrogen content in the steel is favorable for vanadium titanium carbonitride precipitation, which leads to a stronger prohibition of static recrystallization and a longer plateau on the softening curves. Moreover, the precipitated particles in the tested steel will not play an inhibition role in static recrystallization until the nitrogen content in the steel reaches a critical value.


Corresponding author: Baochun Zhao, Key Laboratory of Metal Materials for Marine Equipment and Application, Wu Yi Road 63#, Tie Dong District, Anshan, Liaoning, 114009, China; and Iron and Steel Research Institute of AnGang Group, Anshan, Liaoning, 114009, China, E-mail:

Acknowledgments

Comments and suggestions of the anonymous reviewers are greatly acknowledged.

  1. Research ethics: Not applicable.

  2. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: The National Natural Science Foundation of Liaoning Province, China (2022-BS-359).

  5. Data availability: The raw data can be obtained on request from the corresponding author.

References

1. Patra, S.; Mandal, A.; Mandal, M.; Kumar, V.; Mitra, R.; Chakrabarti, D. Metall. Mater. Trans. A 2019, 50A, 947–965.10.1007/s11661-018-5055-8Suche in Google Scholar

2. Spena, P. R.; Firrao, D. Mater. Sci. Eng. A 2013, 560, 208–215.10.1016/j.msea.2012.09.058Suche in Google Scholar

3. Chen, S. L.; Hui, W. J.; Wang, L. H.; Dai, G. W.; Dong, H. Iron Steel 2014, 49 (6), 1–7.Suche in Google Scholar

4. Elwazri, A. M.; Essadiqi, E.; Yue, S. ISIJ Int. 2004, 44, 744–752. https://doi.org/10.2355/isijinternational.44.744.Suche in Google Scholar

5. Kim, S.-L.; Lee, Y.; Lee, D.-K.; Yoo, T.-L. Mater. Sci. Eng. A 2003, 355, 384–393. https://doi.org/10.1016/s0921-5093(03)00104-7.Suche in Google Scholar

6. Wang, J.; Chen, J.; Zhao, Z.; Ruan, X. J. Iron Steel Res. 2008, 15, 78–81. https://doi.org/10.1016/s1006-706x(08)60130-2.Suche in Google Scholar

7. Gómez, M.; Rancel, L.; Fernández, B. J.; Medina, S. F. Mater. Sci. Eng. A 2009, 501, 188–196. https://doi.org/10.1016/j.msea.2008.09.074.Suche in Google Scholar

8. Hutchinson, B.; Martin1, D.; Karlsson, O.; Lindberg, F.; Thoors, H.; Marceau, R. K. W.; Taylor, A. S. Mater. Sci. Technol. 2017, 33, 497–506. https://doi.org/10.1080/02670836.2016.1235841.Suche in Google Scholar

9. Lee, C. W.; Seong, H. G.; Cooman, B. C. Metall. Mater. Trans. A 2016, 47A, 3649–3663. https://doi.org/10.1007/sl1661-016-3512-9.Suche in Google Scholar

10. Fang, F.; Yong, Q. L.; Yang, C. F.; Zhang, Y. Q.; Su, H. Iron Steel 2010, 45, 66–69.Suche in Google Scholar

11. Yang, C.; Zhang, Y. Iron Steel 2002, 37, 42–47.Suche in Google Scholar

12. Yang, C.; Zhang, Y. Iron Steel Vanadium Titanium 2000, 21, 16–22.Suche in Google Scholar

13. Ming, S. B.; Zhong, J. H.; Yang, C. F.; Zhang, Y. Q. Iron Steel 2001, 36, 44–47.Suche in Google Scholar

14. Meysami, M.; Mousavi, S. A. A. A. Mater. Sci. Eng. A 2011, 528, 3049–3055. https://doi.org/10.1016/j.msea.2010.11.093.Suche in Google Scholar

15. Chai, F.; Shi, Z. R.; Yang, C. F.; Wang, J. J. Chin. J. Mater. Res. 2019, 33, 848–856.Suche in Google Scholar

16. Banks, K. M.; Tuling, A.; Mintz, B. Iron Steel Vanadium Titanium 2015, 5, 63–68.Suche in Google Scholar

17. Bao, S. Q.; Zhao, G.; Yu, C. B.; Chang, Q. M.; Ye, C. L.; Mao, X. P. Appl. Math. Model. 2011, 35, 3268–3275. https://doi.org/10.1016/j.apm.2011.01.024.Suche in Google Scholar

18. Wu, H. Y.; Du, L. X.; Ai, Z. R.; Liu, X. H. J. Mater. Sci. Technol. 2013, 29, 1197–1203. https://doi.org/10.1016/j.jmst.2013.10.030.Suche in Google Scholar

19. Medina, S. F.; Quispe, A.; Gomez, M. Mater. Sci. Technol. 2001, 17, 536–544. https://doi.org/10.1179/026708301101510177.Suche in Google Scholar

20. Medina, S. F. Mater. Sci. Technol. 1998, 14, 217–221. https://doi.org/10.1179/026708398790301610.Suche in Google Scholar

21. Llanos, L.; Pereda, B.; Lopez, B.; Rodriguez-Ibabe, J. M. Mater. Sci. Eng. A 2016, 651, 358–369. https://doi.org/10.1016/j.msea.2015.10.123.Suche in Google Scholar

22. Ferńandez, A. I.; López, B.; Rodrìguez-Ibabe, J. M. Scr. Mater. 1999, 40, 543–549. https://doi.org/10.1016/s1359-6462(98)00452-7.Suche in Google Scholar

23. Hao, L. H.; Sun, M. Y.; Xiao, N. M.; Li, D. Z. J. Mater. Sci. Technol. 2012, 28, 1095–1101. https://doi.org/10.1016/s1005-0302(12)60178-9.Suche in Google Scholar

24. Shaban, M.; Eghbali, B. J. Mater. Sci. Technol. 2011, 27, 359–363. https://doi.org/10.1016/s1005-0302(11)60074-1.Suche in Google Scholar

25. Zhao, M. J.; Huang, L.; Zeng, R.; Wen, D. X.; Su, H. L.; Li, J. J. Mater. Sci. Eng. A 2019, 765, 138300. https://doi.org/10.1016/j.msea.2019.138300.Suche in Google Scholar

26. Xie, Z. X.; Gao, H. Y.; Wang, J.; Yu, Y.; Fang, Y.; Sun, B. D. J. Iron Steel Res. Int. 2011, 18, 45–51. https://doi.org/10.1016/s1006-706x(11)60022-8.Suche in Google Scholar

27. Lin, Y. C.; Chen, M. S.; Zhong, J. J. Mater. Process. Technol. 2009, 209, 2477–2482. https://doi.org/10.1016/j.jmatprotec.2008.05.047.Suche in Google Scholar

28. Medina, S. F.; Gómez, M.; Gómez, P. P. J. Mater. Sci. 2010, 45, 5553–5557. https://doi.org/10.1007/s10853-010-4616-z.Suche in Google Scholar

29. Shi, Z. R.; Yang, C. F.; Wang, R. Z.; Su, H.; Chai, F.; Chu, J. F.; Wang, Q. Mater. Sci. Eng. A 2016, 649, 270–281. https://doi.org/10.1016/j.msea.2015.09.056.Suche in Google Scholar

30. Zhao, F.; Wu, M.; Jiang, B.; Zhang, C.; Xie, J.; Liu, Y. Mater. Sci. Eng. A 2018, 731, 360–368. https://doi.org/10.1016/j.msea.2018.06.070.Suche in Google Scholar

Received: 2023-04-04
Accepted: 2024-01-24
Published Online: 2024-05-23
Published in Print: 2024-06-25

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 15.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2023-0122/pdf
Button zum nach oben scrollen