Abstract
Double compression tests were performed on vanadium–titanium microalloyed steels with different nitrogen contents by using a Gleeble-3800 thermo-mechanical simulator to study the softening behaviors of the deformed austenite during different time intervals between the two passes. The static recrystallization fractions were calculated by the stress offset method and static recrystallization diagrams for the tested steels were obtained. The effects of deformation temperature and interval time on the softening behaviors were analyzed. Especially, the effect of nitrogen on the softening behaviors of the tested steels is discussed in detail. The results showed that the softening behaviors of the tested steels with various nitrogen contents are different. As far as the steel with low nitrogen content is concerned, the softening fraction increases monotonically with increasing time interval, and higher temperature can promote the static recrystallization. However, with more nitrogen added into vanadium–titanium microalloyed steel, precipitated particles of vanadium titanium carbonitride can be observed in the tested steel at the temperature of 850 °C or 800 °C, which leads to the formation of plateaus on the softening curves. An increase in nitrogen content in the steel is favorable for vanadium titanium carbonitride precipitation, which leads to a stronger prohibition of static recrystallization and a longer plateau on the softening curves. Moreover, the precipitated particles in the tested steel will not play an inhibition role in static recrystallization until the nitrogen content in the steel reaches a critical value.
Acknowledgments
Comments and suggestions of the anonymous reviewers are greatly acknowledged.
-
Research ethics: Not applicable.
-
Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Competing interests: The authors state no conflict of interest.
-
Research funding: The National Natural Science Foundation of Liaoning Province, China (2022-BS-359).
-
Data availability: The raw data can be obtained on request from the corresponding author.
References
1. Patra, S.; Mandal, A.; Mandal, M.; Kumar, V.; Mitra, R.; Chakrabarti, D. Metall. Mater. Trans. A 2019, 50A, 947–965.10.1007/s11661-018-5055-8Suche in Google Scholar
2. Spena, P. R.; Firrao, D. Mater. Sci. Eng. A 2013, 560, 208–215.10.1016/j.msea.2012.09.058Suche in Google Scholar
3. Chen, S. L.; Hui, W. J.; Wang, L. H.; Dai, G. W.; Dong, H. Iron Steel 2014, 49 (6), 1–7.Suche in Google Scholar
4. Elwazri, A. M.; Essadiqi, E.; Yue, S. ISIJ Int. 2004, 44, 744–752. https://doi.org/10.2355/isijinternational.44.744.Suche in Google Scholar
5. Kim, S.-L.; Lee, Y.; Lee, D.-K.; Yoo, T.-L. Mater. Sci. Eng. A 2003, 355, 384–393. https://doi.org/10.1016/s0921-5093(03)00104-7.Suche in Google Scholar
6. Wang, J.; Chen, J.; Zhao, Z.; Ruan, X. J. Iron Steel Res. 2008, 15, 78–81. https://doi.org/10.1016/s1006-706x(08)60130-2.Suche in Google Scholar
7. Gómez, M.; Rancel, L.; Fernández, B. J.; Medina, S. F. Mater. Sci. Eng. A 2009, 501, 188–196. https://doi.org/10.1016/j.msea.2008.09.074.Suche in Google Scholar
8. Hutchinson, B.; Martin1, D.; Karlsson, O.; Lindberg, F.; Thoors, H.; Marceau, R. K. W.; Taylor, A. S. Mater. Sci. Technol. 2017, 33, 497–506. https://doi.org/10.1080/02670836.2016.1235841.Suche in Google Scholar
9. Lee, C. W.; Seong, H. G.; Cooman, B. C. Metall. Mater. Trans. A 2016, 47A, 3649–3663. https://doi.org/10.1007/sl1661-016-3512-9.Suche in Google Scholar
10. Fang, F.; Yong, Q. L.; Yang, C. F.; Zhang, Y. Q.; Su, H. Iron Steel 2010, 45, 66–69.Suche in Google Scholar
11. Yang, C.; Zhang, Y. Iron Steel 2002, 37, 42–47.Suche in Google Scholar
12. Yang, C.; Zhang, Y. Iron Steel Vanadium Titanium 2000, 21, 16–22.Suche in Google Scholar
13. Ming, S. B.; Zhong, J. H.; Yang, C. F.; Zhang, Y. Q. Iron Steel 2001, 36, 44–47.Suche in Google Scholar
14. Meysami, M.; Mousavi, S. A. A. A. Mater. Sci. Eng. A 2011, 528, 3049–3055. https://doi.org/10.1016/j.msea.2010.11.093.Suche in Google Scholar
15. Chai, F.; Shi, Z. R.; Yang, C. F.; Wang, J. J. Chin. J. Mater. Res. 2019, 33, 848–856.Suche in Google Scholar
16. Banks, K. M.; Tuling, A.; Mintz, B. Iron Steel Vanadium Titanium 2015, 5, 63–68.Suche in Google Scholar
17. Bao, S. Q.; Zhao, G.; Yu, C. B.; Chang, Q. M.; Ye, C. L.; Mao, X. P. Appl. Math. Model. 2011, 35, 3268–3275. https://doi.org/10.1016/j.apm.2011.01.024.Suche in Google Scholar
18. Wu, H. Y.; Du, L. X.; Ai, Z. R.; Liu, X. H. J. Mater. Sci. Technol. 2013, 29, 1197–1203. https://doi.org/10.1016/j.jmst.2013.10.030.Suche in Google Scholar
19. Medina, S. F.; Quispe, A.; Gomez, M. Mater. Sci. Technol. 2001, 17, 536–544. https://doi.org/10.1179/026708301101510177.Suche in Google Scholar
20. Medina, S. F. Mater. Sci. Technol. 1998, 14, 217–221. https://doi.org/10.1179/026708398790301610.Suche in Google Scholar
21. Llanos, L.; Pereda, B.; Lopez, B.; Rodriguez-Ibabe, J. M. Mater. Sci. Eng. A 2016, 651, 358–369. https://doi.org/10.1016/j.msea.2015.10.123.Suche in Google Scholar
22. Ferńandez, A. I.; López, B.; Rodrìguez-Ibabe, J. M. Scr. Mater. 1999, 40, 543–549. https://doi.org/10.1016/s1359-6462(98)00452-7.Suche in Google Scholar
23. Hao, L. H.; Sun, M. Y.; Xiao, N. M.; Li, D. Z. J. Mater. Sci. Technol. 2012, 28, 1095–1101. https://doi.org/10.1016/s1005-0302(12)60178-9.Suche in Google Scholar
24. Shaban, M.; Eghbali, B. J. Mater. Sci. Technol. 2011, 27, 359–363. https://doi.org/10.1016/s1005-0302(11)60074-1.Suche in Google Scholar
25. Zhao, M. J.; Huang, L.; Zeng, R.; Wen, D. X.; Su, H. L.; Li, J. J. Mater. Sci. Eng. A 2019, 765, 138300. https://doi.org/10.1016/j.msea.2019.138300.Suche in Google Scholar
26. Xie, Z. X.; Gao, H. Y.; Wang, J.; Yu, Y.; Fang, Y.; Sun, B. D. J. Iron Steel Res. Int. 2011, 18, 45–51. https://doi.org/10.1016/s1006-706x(11)60022-8.Suche in Google Scholar
27. Lin, Y. C.; Chen, M. S.; Zhong, J. J. Mater. Process. Technol. 2009, 209, 2477–2482. https://doi.org/10.1016/j.jmatprotec.2008.05.047.Suche in Google Scholar
28. Medina, S. F.; Gómez, M.; Gómez, P. P. J. Mater. Sci. 2010, 45, 5553–5557. https://doi.org/10.1007/s10853-010-4616-z.Suche in Google Scholar
29. Shi, Z. R.; Yang, C. F.; Wang, R. Z.; Su, H.; Chai, F.; Chu, J. F.; Wang, Q. Mater. Sci. Eng. A 2016, 649, 270–281. https://doi.org/10.1016/j.msea.2015.09.056.Suche in Google Scholar
30. Zhao, F.; Wu, M.; Jiang, B.; Zhang, C.; Xie, J.; Liu, Y. Mater. Sci. Eng. A 2018, 731, 360–368. https://doi.org/10.1016/j.msea.2018.06.070.Suche in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Original Papers
- Experimental investigation and thermodynamic analysis of TiC–Fe cermets with Mo additions
- Investigations on porous silicon nitride ceramics prepared by the gel-casting method
- Catalysis effect of rare earth element Ce on paste boriding treatment of AISI 410 steel
- Effect of nitrogen content on the static recrystallization and precipitation behaviors of vanadium–titanium microalloyed steels
- Effects of addition of Er and Zr on microstructure and mechanical properties of Al–Cu–Mn–Si–Mg alloy
- The quasi-binary phase diagrams of R 2Fe14B–Ce2Fe14B (R = Nd, Pr) systems
- Trivalent Gd incorporated Zn2SiO4 phosphor material for EPR and luminescence investigations
- Effects of translaminar edge crack and fiber angle on fracture toughness and crack propagation behaviors of laminated carbon fiber composites
- Blast protection of underwater tunnels with 3D auxetic materials
- News
- DGM – Deutsche Gesellschaft für Materialkunde
Artikel in diesem Heft
- Frontmatter
- Original Papers
- Experimental investigation and thermodynamic analysis of TiC–Fe cermets with Mo additions
- Investigations on porous silicon nitride ceramics prepared by the gel-casting method
- Catalysis effect of rare earth element Ce on paste boriding treatment of AISI 410 steel
- Effect of nitrogen content on the static recrystallization and precipitation behaviors of vanadium–titanium microalloyed steels
- Effects of addition of Er and Zr on microstructure and mechanical properties of Al–Cu–Mn–Si–Mg alloy
- The quasi-binary phase diagrams of R 2Fe14B–Ce2Fe14B (R = Nd, Pr) systems
- Trivalent Gd incorporated Zn2SiO4 phosphor material for EPR and luminescence investigations
- Effects of translaminar edge crack and fiber angle on fracture toughness and crack propagation behaviors of laminated carbon fiber composites
- Blast protection of underwater tunnels with 3D auxetic materials
- News
- DGM – Deutsche Gesellschaft für Materialkunde