Home Effects of translaminar edge crack and fiber angle on fracture toughness and crack propagation behaviors of laminated carbon fiber composites
Article
Licensed
Unlicensed Requires Authentication

Effects of translaminar edge crack and fiber angle on fracture toughness and crack propagation behaviors of laminated carbon fiber composites

  • Ahmet Murat Asan ORCID logo EMAIL logo , Mete Onur Kaman , Serkan Dag , Serkan Erdem and Kadir Turan
Published/Copyright: May 27, 2024
Become an author with De Gruyter Brill

Abstract

In this study, the translaminar fracture toughness of carbon fiber laminated composites with different layer sequences was investigated experimentally and numerically for different crack directions. In the numerical study, first of all, the critical stress intensity factor was determined by using the M-integral method. Three-dimensional model and M-integral analysis were achieved in the ANSYS finite element package program. The non-local stress fracture criterion was used to in order to find failure curves of the materials. Then, in order to find the crack propagation directions numerically, the solid model was transferred to the LS-DYNA program and progressive failure analysis was performed. Fracture toughness decreased by 9.92 % with the change of crack angle from 15° to 90°. As the fiber angle changed from 0° to 45°, it decreased by 9.17 %. The biggest error between the experimental and numerical study results was found at α = 45°, with a rate of 12.3 %.


Corresponding author: Ahmet Murat Asan, Mechanical Engineering, Firat University, Elazig, Türkiye, E-mail:

  1. Research ethics: Not applicable.

  2. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The authors state no competing interests.

  4. Research funding: This work was supported by the Scientific and Technological Research Council of Türkiye, TUBITAK (Grant No. 120M596).

  5. Data availability: The raw data can be obtained on request from the corresponding author.

Appendix A

[R] transformation matrix of direction cosines defines as

(A.1) R = t 11 2 t 12 2 t 13 2 t 12 t 13 t 13 t 11 t 11 t 12 t 21 2 t 22 2 t 23 2 t 22 t 23 t 23 t 21 t 21 t 22 t 31 2 t 32 2 t 33 2 t 32 t 33 t 33 t 31 t 31 t 32 2 t 21 t 31 2 t 22 t 32 2 t 23 t 33 t 22 t 33 + t 23 t 32 t 23 t 31 + t 21 t 33 t 21 t 32 + t 22 t 31 2 t 31 t 11 2 t 32 t 12 2 t 33 t 13 t 32 t 13 + t 33 t 12 t 33 t 11 + t 31 t 13 t 31 t 12 + t 32 t 11 2 t 11 t 21 2 t 12 t 22 2 t 13 t 23 t 12 t 23 + t 13 t 22 t 13 t 21 + t 11 t 23 t 11 t 22 + t 12 t 21

for rotating the material stiffness and compliance matrices. With these angles, the direction cosines t ij , (i, j = 1–3) are found as

(A.2) t = Cos [ θ z ] Cos [ θ y ] Sin [ θ z ] Sin [ θ x ] Sin [ θ y ] Sin [ θ z ] Cos [ θ x ] Cos [ θ z ] Sin [ θ y ] + Sin [ θ z ] Sin [ θ x ] Cos [ θ y ] Sin [ θ z ] Cos [ θ y ] + Cos [ θ z ] Sin [ θ x ] Sin [ θ y ] Cos [ θ z ] Cos [ θ x ] Sin [ θ z ] Sin [ θ y ] Cos [ θ z ] Sin [ θ x ] Cos [ θ y ] Cos [ θ x ] Sin [ θ y ] Sin [ θ x ] Cos [ θ x ] Cos [ θ y ]

in the matrix form. Here, θ x , θ y and θ z are Euler angles. 38

Appendix B

Mechanical properties of the plate E a , E b , v ab , v ba ,G ab stacked at 0°, are substituted in Equation (B.1) to obtain the coefficients of the rotated stiffness matrices (Equation (B.2)). 41

Q 11 = E a 1 v a b v b a

Q 12 = v a b E b 1 v a b v b a

(B.1) Q 16 = 0

Q 22 = E b 1 v a b v b a

Q 26 = 0

Q 66 = G 12

Q 11 ̄ = Q 11 c 4 + Q 22 s 4 + 2 ( Q 12 + 2 Q 66 ) s 2 c 2

Q 12 ̄ = ( Q 11 + Q 22 4 Q 66 ) s 2 c 2 + Q 12 ( s 4 + c 4 )

(B.2) Q 22 ̄ = Q 11 s 4 + Q 22 c 4 + 2 ( Q 12 + 2 Q 66 ) s 2 c 2

Q 16 ̄ = ( Q 11 Q 12 2 Q 66 ) c 3 s ( Q 22 Q 12 2 Q 66 ) s 3 c

Q 26 ̄ = ( Q 11 Q 12 2 Q 66 ) s 3 c ( Q 22 Q 12 2 Q 66 ) c 3 s

Q 66 ̄ = ( Q 11 + Q 22 2 Q 12 2 Q 66 ) s 2 c 2 + Q 66 ( s 4 + c 4 )

where; c = Cos[θ°] and s = Sin[θ°], Equation (B.3) is obtained for each fiber angle where θ is the fiber angle.

(B.3) Q θ ̄ = Q 11 ̄ Q 12 ̄ Q 16 ̄ Q 12 ̄ Q 22 ̄ Q 26 ̄ Q 16 ̄ Q 26 ̄ Q 66 ̄

The obtained stiffness matrices are substituted in Equation (B.4) and the elongation stiffness matrix is found (Equation (B.4)).

(B.4) [ A i j ] = k = 1 t Q k ̄ h k h k 1

In Equation (B.4), t represents the number of layers and h k represents the thickness of each layer. As a result, the mechanical properties of the plates stacked in different directions are obtained as in Equation (B.5).

E x = 1 h A 11 *

E y = 1 h A 22 *

(B.5) G x y = 1 h A 66 *

υ x y = A 12 * A 11 *

υ y x = A 12 * A 22 *

In Equation (B.5), the expressions A i j * are obtained by inverting Equation (B.4) and h is the total thickness of the plate.

Appendix C

The coefficients (A, B, C, D) in K I and K II for DCM are calculated with 42

(C.1) A = Re i μ 1 μ 2 ( μ 1 p 2 μ 2 p 1 )

(C.2) B = Re i μ 1 μ 2 ( p 2 p 1 )

(C.3) C = Re i μ 1 μ 2 ( μ 1 q 2 μ 2 q 1 )

(C.4) D = Re i μ 1 μ 2 q 2 q 1

Appendix D

Trigonometric functions λ 1, λ 12 and λ 2 in Equation (19) can be found with using

(D.1) λ 1 = ( Z 11 Z 21 ) Co s 2 γ + Z 31 Sin 2 γ Z 11 2 + c 12 c 1 ( Z 11 Z 21 ) 0.5 Sin 2 γ 2 Z 31 Co s 2 γ + Z 31 2

(D.2) λ 12 = 2 Z 12 Z 22 Co s 2 γ + 2 Z 32 Sin 2 γ 2 Z 12 × 2 Z 11 Z 21 Co s 2 γ + 2 Z 31 Sin 2 γ 2 Z 11 + c 12 c 1 Z 12 Z 22 Sin 2 γ 4 Z 32 Co s 2 γ + 2 Z 32 × Z 11 Z 21 Sin 2 γ 4 Z 31 Co s 2 γ + 2 Z 31

(D.3) λ 2 = Z 12 Z 22 Co s 2 γ + Z 32 Sin 2 γ Z 12 2 + c 12 c 1 Z 12 Z 22 0.5 Sin 2 γ 2 Z 32 Co s 2 γ + Z 32 2

In these equations, Z 11Z 32 are the coefficients in the asymptotic solution of the stress fields near the crack tip in an orthotropic material and are calculated by

(D.4) Z 11 = Re μ 1 μ 2 μ 1 μ 2 μ 2 Cos ϕ + μ 2 Sin ϕ μ 1 Cos ϕ + μ 1 Sin ϕ

(D.5) Z 12 = Re 1 μ 1 μ 2 ( μ 2 ) 2 Cos ϕ + μ 2 Sin ϕ ( μ 1 ) 2 Cos ϕ + μ 1 Sin ϕ

(D.6) Z 21 = Re 1 μ 1 μ 2 μ 1 Cos ϕ + μ 2 Sin ϕ μ 2 Cos ϕ + μ 1 Sin ϕ

(D.7) Z 22 = Re 1 μ 1 μ 2 1 Cos ϕ + μ 2 Sin ϕ 1 Cos ϕ + μ 1 Sin ϕ

(D.8) Z 31 = Re μ 1 μ 2 μ 1 μ 2 1 Cos ϕ + μ 1 Sin ϕ 1 Cos ϕ + μ 2 Sin ϕ

(D.9) Z 32 = Re 1 μ 1 μ 2 μ 1 Cos ϕ + μ 1 Sin ϕ μ 2 Cos ϕ + μ 2 Sin ϕ

Here, ϕ represents the angle in the local polar coordinate system (r, ϕ) in an arbitrary fractured structure. μ 1 and μ 2 are the positive imaginary parts obtained from the solution of Equation (7). The c 12 and c 1 in Equations (D.13) are the extensional and sliding compliance that characterize the material weakened by microcracks oriented in the plane of orthotropy of the normal and are expressed by 70

(D.10) c 12 c 1 = K Ic K IIc 2 = E I E II

Here, K Ic and K IIc are Mode I and Mode II fracture toughnesses, respectively. E I and E II are generalized elasticity modules and are calculated by 71

(D.11) E I = C 11 C 22 2 C 22 C 11 + 2 C 12 + C 66 2 C 11 1 / 2

(D.12) E II = C 11 2 2 C 22 C 11 + 2 C 12 + C 66 2 C 11 1 / 2

In the above equations, C kl and C k l are coefficients dependent on elastic properties and are calculated by

(D.13) C k l = C k l ( C k 3 C l 3 ) / C 33 ( k , l = 1,2 )

References

1. Teixeira, R. F.; Pinho, S. T.; Robinson, P. Thickness–Dependence of the Translaminar Fracture Toughness: Experimental Study Using Thin–Ply Composites. Composites, Part A 2016, 90, 33–44. https://doi.org/10.1016/j.compositesa.2016.05.031.Search in Google Scholar

2. Gigliotti, L.; Pinho, S. T. Translaminar Fracture Toughness of NCF Composites with Multiaxial Blankets. Mater. Des. 2016, 94, 410–416. https://doi.org/10.1016/j.matdes.2015.12.167.Search in Google Scholar

3. Marin, L.; Gonzalez, E. V.; Maimi, P.; Trias, D.; Camanho, P. P. Hygrothermal Effects on the Translaminar Fracture Toughness of Cross–Ply Carbon/Epoxy Laminates: Failure Mechanisms. Compos. Sci. Technol. 2016, 122, 130–139. https://doi.org/10.1016/j.compscitech.2015.10.020.Search in Google Scholar

4. Ortega, A.; Maimi, P.; Gonzalez, E. V.; Sainz de Aja, J. R.; Escalera, F. M.; Cruz, P. Translaminar Fracture Toughness of Interply Hybrid Laminates under Tensile and Compressive Loads. Compos. Sci. Technol. 2017, 143, 1–12. https://doi.org/10.1016/j.compscitech.2017.02.029.Search in Google Scholar

5. Katafiasz, T. J.; Iannucci, L.; Greenhalgh, E. S. Development of a Novel Compact Tension Specimen to Mitigate Premature Compression and Buckling Failure Modes within Fibre Hybrid Epoxy Composites. Compos. Struct. 2019, 207, 93–107. https://doi.org/10.1016/j.compstruct.2018.06.124.Search in Google Scholar

6. Garcia Carpintero, A.; Beuken, B. N. G.; Haldar, S.; Herraez, M.; Gonzalez, C.; Lopes, C. S. Fracture Behaviour of Triaxial Braided Composites and its Simulation Using a Multi–Material Shell Modelling Approach. Eng. Fract. Mech. 2018, 188, 268–286. https://doi.org/10.1016/j.engfracmech.2017.08.034.Search in Google Scholar

7. Souza, R. R. R.; Junior, S. L. N.; Silveira, N. N. A.; Arbelo, M. A.; Donadon, M. V. Translaminar Fracture Toughness and Fatigue Crack Growth Characterization of Carbon–Epoxy Plain Weave Laminates. Polym. Compos. 2019, 40, 3791–3804. https://doi.org/10.1002/pc.25247.Search in Google Scholar

8. Cepero, F.; Garcia, I. G.; Justo, J.; Mantic, V.; Paris, F. An Experimental Study of the Translaminar Fracture Toughnesses in Composites for Different Crack Growth Directions, Parallel and Transverse to the Fiber Direction. Compos. Sci. Technol. 2019, 181, 107679. https://doi.org/10.1016/j.compscitech.2019.107679.Search in Google Scholar

9. Gonzalez, J. D. P.; Vieille, B.; Bouvet, C. High Temperature Translaminar Fracture of Woven–Ply Thermoplastic Laminates in Tension and in Compression. Eng. Fract. Mech. 2021, 246, 107616. https://doi.org/10.1016/j.engfracmech.2021.107616.Search in Google Scholar

10. Bongiorno, F.; Militello, C.; Zuccarello, B. Mode I Translaminar Fracture Toughness of High Performance Laminated Biocomposites Reinforced by Sisal Fibers: Accurate Measurement Approach and Lay–Up Effects. Compos. Sci. Technol. 2022, 217, 109089. https://doi.org/10.1016/j.compscitech.2021.109089.Search in Google Scholar

11. Saadati, Y.; Lebrun, G.; Bouvet, C.; Chatelain, J. F.; Beauchamp, Y. Study of Translaminar Fracture Toughness of Unidirectional Flax/Epoxy Composite. Compos., Part C: Open Access 2020, 1, 100008. https://doi.org/10.1016/j.jcomc.2020.100008.Search in Google Scholar

12. Sun, X.; Takeda, S.; Wisnom, M. R.; Xu, X. In Situ Characterization of Trans–laminar Fracture Toughness Using X–Ray Computed Tomography. Compos. Commun. 2020, 21, 100408. https://doi.org/10.1016/j.coco.2020.100408.Search in Google Scholar

13. Broggi, G.; Cugnoni, J.; Michaud, V. Implementation and Parametric Study of J–Integral Data Reduction Methods for the Translaminar Toughness of Hierarchical Thin–Ply Composites. Eng. Fract. Mech. 2023, 282, 109169. https://doi.org/10.1016/j.engfracmech.2023.10916.Search in Google Scholar

14. Kaman, M. O. Effect of Fiber Orientation on Fracture Toughness of Laminated Composite Plates [0°/θ°]s. Eng. Fract. Mech. 2011, 78, 2521–2534. https://doi.org/10.1016/j.engfracmech.2011.06.005.Search in Google Scholar

15. Fallah, N.; Nikraftar, N. Meshless Finite Volume Method for the Analysis of Fracture Problems in Orthotropic Media. Eng. Fract. Mech. 2018, 204, 46–62. https://doi.org/10.1016/j.engfracmech.2018.09.029.Search in Google Scholar

16. Jun, L.; Yanjie, X.; Yan, G.; Chia–Ming, F. The Generalized Finite Difference Method for In–Plane Crack Problems. Eng. Anal. Bound. Elem. 2019, 98, 147–156. https://doi.org/10.1016/j.enganabound.2018.10.016.Search in Google Scholar

17. Romanowicz, M.; Seweryn, A. Verification of A Non–local Stress Criterion for Mixed Mode Fracture in Wood. Eng. Fract. Mech. 2008, 75, 3141–3160. https://doi.org/10.1016/j.engfracmech.2007.12.006.Search in Google Scholar

18. Abdullah, S. I. B. S.; Iannucci, L.; Greenhalgh, E. S. On the Translaminar Fracture Toughness of Vectran/Epoxy Composite Material. Compos. Struct. 2018, 202, 566–577. https://doi.org/10.1016/j.compstruct.2018.03.004.Search in Google Scholar

19. Sommer, D. E.; Thomson, D.; Hoffmann, J.; Petrinic, N. Numerical Modelling of Quasi–Static and Dynamic Compact Tension Tests for Obtaining the Translaminar Fracture Toughness of CFRP. Compos. Sci. Technol. 2023, 237, 109997. https://doi.org/10.1016/j.compscitech.2023.109997.Search in Google Scholar

20. Kumar, S.; Dhas, B.; Roy, D. Emergence of Pseudo–ductility in Laminated Ceramic Composites. Compos. Struct. 2018, 204, 664–676. https://doi.org/10.1016/j.compstruct.2018.07.129.Search in Google Scholar

21. Hahn, P.; Channammagari, H.; Imbert, M.; May, M. High–Rate Mode II Fracture Toughness Testing of Polymer Matrix Composites Using the Transverse Crack Tension (TCT) Test. Composites, Part B 2022, 233, 109636. https://doi.org/10.1016/j.compositesb.2022.109636.Search in Google Scholar

22. Shaikh, A. A.; Pradhan, A. A.; Kotasthane, A. M.; Patil, S.; Karuppanan, S. Comparative Analysis of Basalt/E–Glass/S2–Fibreglass–Carbon Fiber Reinforced Epoxy Laminates Using Finite Element Method. Mater. Today: Proc. 2022, 63, 630–638. https://doi.org/10.1016/j.matpr.2022.04.385.Search in Google Scholar

23. Kaushik, V.; Ghosh, A. Experimental and Numerical Investigation of Mode–I & Mode–II Fatigue Crack Growth in Unidirectional Composites Using XIGA–CZM Approach. Int. J. Fatigue 2020, 134, 105461. https://doi.org/10.1016/j.ijfatigue.2019.105461.Search in Google Scholar

24. Zhang, J. N.; Yu, H.; Xu, W. L.; Lv, C. S.; Micheal, M.; Shi, F.; Wu, H. A. A Hybrid Numerical Approach for Hydraulic Fracturing in A Naturally Fractured Formation Combining the XFEM and Phase–Field Model. Eng. Fract. Mech. 2022, 271, 108621. https://doi.org/10.1016/j.engfracmech.2022.108621.Search in Google Scholar

25. Hwang, J. H.; Lee, C. S.; Hwang, W. Effect of Crack Propagation Directions on the Interlaminar Fracture Toughness of Carbon/Epoxy Composite Materials. Appl. Compos. Mater. 2001, 8, 411–433. https://doi.org/10.1023/A:1012663722334.10.1023/A:1012663722334Search in Google Scholar

26. Naghipour, P.; Bartsch, M.; Chernova, L.; Hausmann, J.; Voggenreiter, H. Effect of Fiber Angle Orientation and Stacking Sequence on Mixed Mode Fracture Toughness of Carbon Fiber Reinforced Plastics: Numerical and Experimental Investigations. Mater. Sci. Eng. A 2010, 527, 509–517. https://doi.org/10.1016/j.msea.2009.07.069.Search in Google Scholar

27. Chou, I. Effect of Fiber Orientation and Moisture Absorption on the Interlaminar Fracture Toughness of CFRP Laminates. Adv. Compos. Mater. 1998, 7, 377–394. https://doi.org/10.1163/156855198x00264.Search in Google Scholar

28. Liu, H.; Meng, X.; Zhang, H.; Nie, H.; Zhang, C.; Li, Y. The Dynamic Crack Propagation Behavior of Mode I Interlaminar Crack in Unidirectional Carbon/Epoxy Composites. Eng. Fract. Mech. 2019, 215, 65–82. https://doi.org/10.1016/j.engfracmech.2019.05.004.Search in Google Scholar

29. Azadi, M.; Saeedi, M.; Mokhtarishirazabad, M.; Lopez–Crespo, P. Effects of Loading Rate on Crack Growth Behavior in Carbon Fiber Reinforced Polymer Composites Using Digital Image Correlation Technique. Composites, Part B 2019, 175, 107161. https://doi.org/10.1016/j.compositesb.2019.107161.Search in Google Scholar

30. Kharratzadeh, M.; Shokrieh, M. M.; Salamat–talab, M. Effect of Interface Fiber Angle on the Mode I Delamination Growth of Plain Woven Glass Fiber–Reinforced Composites. Theor. Appl. Fract. Mech. 2018, 98, 1–12. https://doi.org/10.1016/j.tafmec.2018.09.006.Search in Google Scholar

31. Papon, E. A.; Haque, A. Fracture Toughness of Additively Manufactured Carbon Fiber Reinforced Composites. Addit. Manuf. 2019, 26, 41–52. https://doi.org/10.1016/j.addma.2018.12.010.Search in Google Scholar

32. Zhuang, W.; Ao, W. Effect of Stacking Angles on Mechanical Properties and Damage Propagation of Plain Woven Carbon Fiber Laminates. Mater. Res. Express 2018, 5, 035603. https://doi.org/10.1088/2053–1591/aab332.10.1088/2053-1591/aab332Search in Google Scholar

33. Morioka, K.; Tomita, Y. Effect of Lay–Up Sequences on Mechanical Properties and Fracture Behavior of CFRP Laminate Composites. Mater. Charact. 2000, 45, 125–136. https://doi.org/10.1016/S1044–5803(00)00065–6.10.1016/S1044-5803(00)00065-6Search in Google Scholar

34. Albayrak, M.; Kaman, M. O.; Bozkurt, I. The Effect of Lamina Configuration on Low–Velocity Impact Behavior for Glass Fiber/Rubber Curved Composites. J. Compos. Mater. 2023, 57, 1875–1907. https://doi.org/10.1177/0021998323116495.Search in Google Scholar

35. Erdem, S.; Gur, M.; Kaman, M. O. Nonlinear Buckling Behavior of Hybrid Composites with Different Notch Types. Mater. Test. 2021, 63, 797–804. https://doi.org/10.1515/mt–2021–0001.10.1515/mt-2021-0001Search in Google Scholar

36. Asan, A. M. Investigation of the Translaminar Fracture Behavior of the Fiber Reinforced Composites Stitched Perpendicular to Their Plane. Ph.D. Thesis; Fırat University, Institute of Science and Technology: Elazig, 2023.10.1007/s40430-024-04846-6Search in Google Scholar

37. ASTM E1922. Standard Test Method for Translaminar Fracture Toughness of Laminated and Pultruded Polymer Matrix Composite Materials. American Society for Testing and Materials, Reprinted from the Annual Book of ASTM Standards; ASTM International: West Conshohocken, (PA), 2015; pp. 1–5. https://www.astm.org/e1922-04r15.html.Search in Google Scholar

38. Banks-Sills, L.; Wawrzynek, P. A.; Carter, B.; Ingraffea, A. R.; Hershkovitz, I. Methods for Calculating Stress Intensity Factors in Anisotropic Materials: Part II—Arbitrary Geometry. Eng. Fract. Mech. 2007, 74, 1293–1307. https://doi.org/10.1016/j.engfracmech.2006.07.005.Search in Google Scholar

39. Freed, Y.; Banks–Sills, L. A through Interface Crack between A ±45° Transversely Isotropic Pair of Materials. Int. J. Fract. 2005, 133, 1–41. https://doi.org/10.1007/s10704–005–1922–6.10.1007/s10704-005-1922-6Search in Google Scholar

40. Warzynek, P. A.; Carter, B. J.; Banks–Sills, L. The M–Integral for Computing Stress Intensity Factors in Generally Anisotropic Materials. Technical Report for National Aeronautics and Space Administration; Marshall Space Flight Center, 2005. https://ntrs.nasa.gov/citations/20060002645.Search in Google Scholar

41. Kaw, A. K. Mechanics of Composite Materials; Taylor & Francis: Boca Raton, 2005.10.1201/9781420058291Search in Google Scholar

42. Kim, J. H.; Paulino, G. H. Mixed–Mode J–Integral Formulation and Implementation Using Graded Elements for Fracture Analysis of Nonhomogeneous Orthotropic Materials. Mech. Mater. 2003, 35, 107–128. https://doi.org/10.1016/s0167–6636(02)00159–x.10.1016/S0167-6636(02)00159-XSearch in Google Scholar

43. Wu, E. M. Application of Fracture Mechanics to Anisotropic Plates. J. Appl. Mech. 1967, 34, 967–974. https://doi.org/10.1115/1.3607864.Search in Google Scholar

44. Leicester, R. H. Application of Linear Fracture Mechanics to Notched Timber Elements. Prog. Struct. Eng. Mater. 2006, 8, 29–37. https://doi.org/10.1002/pse.210.Search in Google Scholar

45. Broberg, K. B. Cracks and Fracture; Academic Press: San Diego, 1999.Search in Google Scholar

46. Hunt, D. G.; Croager, W. P. Mode II Fracture Toughness of Wood Measured by A Mixed–Mode Test Method. J. Mater. Sci. Lett. 1982, 1, 77–79. https://doi.org/10.1007/bf00731031.Search in Google Scholar

47. Mall, S.; Murphy, J. F.; Shottafer, J. E. Criterion for Mixed Mode Fracture in Wood. J. Eng. Mech. 1983, 109, 680–690. https://doi.org/10.1061/(asce)0733–9399(1983)109:3(680).10.1061/(ASCE)0733-9399(1983)109:3(680)Search in Google Scholar

48. Tan, H.; Liu, L.; Guan, Y.; Chen, W.; Zhao, Z. A Simplified Delamination Modelling Methodology for Triaxial Braided Composites with Macro–Scale Solid Finite–Element Models. Int. J. Crashworthiness. 2019, 24, 54–70. https://doi.org/10.1080/13588265.2017.1400634.Search in Google Scholar

49. Materials Sciences Corporation, University of Delaware Center for Composite Materials A Progressive Composite Damage Model for Unidirectional and Woven Fabric Composites; User Manual for MAT–162 Material Card of Ls–Dyna: Delaware, 2014. https://www.ccm.udel.edu/wp-content/uploads/2014/12/MAT162-USER-MANUAL-Version-14C-2014.pdf.Search in Google Scholar

50. Hashin, Z. Failure Criteria for Unidirectional Fiber Composites. J. Appl. Mech. 1980, 47, 329–334. https://doi.org/10.1115/1.3153664.Search in Google Scholar

51. Bozkurt, I. Investigation of Impact Behavior of Composite Core Sandwich Plates with Variable Geometry. Ph.D. Thesis; Fırat University, Institute of Science and Technology: Elazig, 2022.Search in Google Scholar

52. Matzenmiller, A.; Lubliner, J.; Taylor, R. L. A Constitutive Model for Anisotropic Damage in Fiber–Composites. Mech. Mater. 1995, 20, 125–152. https://doi.org/10.1016/0167–6636(94)00053–0.10.1016/0167-6636(94)00053-0Search in Google Scholar

53. Shi, C.; Guo, B.; Sarikaya, M.; Celik, M.; Chen, P.; Guden, M. Determination of the Material Model and Damage Parameters of a Carbon Fiber Reinforced Laminated Epoxy Composite for High Strain Rate Planar Compression. Int. J. Impact Eng. 2021, 149, 103771. https://doi.org/10.1016/j.ijimpeng.2020.103771.Search in Google Scholar

54. Xie, G.; Huang, R.; Dong, Y.; Li, H.; Li, K.; Zhong, Y.; Gong, X.; Du, W.; Wang, L. An Interaction Integral Method Coupled with Special Crack Tip Elements for Evaluation of Stress Intensity Factors. Eng. Anal. Bound. Elem. 2022, 140, 421–431. https://doi.org/10.1016/j.enganabound.2022.04.027.Search in Google Scholar

55. Fayed, A. S. Numerical Analysis of Mixed Mode I/II Stress Intensity Factors of Edge Slant Cracked Plates. Eng. Solid Mech. 2017, 5, 61–70. https://doi.org/10.5267/j.esm.2016.8.001.Search in Google Scholar

56. Liu, X.; He, Y.; Qiu, D.; Yu, Z. Numerical Optimizing and Experimental Evaluation of Stepwise Rapid High–Pressure Microwave Curing Carbon Fiber/Epoxy Composite Repair Patch. Compos. Struct. 2019, 230, 111529. https://doi.org/10.1016/j.compstruct.2019.111529.Search in Google Scholar

57. Esmaeili, A.; Ghane, E.; Mohammadi, B. On the Use of Digital Image Correlation for Translaminar Fracture of off–Axis Composite. Int. J. Fract. 2022, 234, 195–212. https://doi.org/10.1007/S10704–022–00625–3.10.1007/s10704-022-00625-3Search in Google Scholar

58. Li, D. H. Extended Layerwise Method of Laminated Composite Shells. Compos. Struct. 2016, 136, 313–344. https://doi.org/10.1016/j.compstruct.2015.08.141.Search in Google Scholar

59. Song, S. H.; Paulino, G. H. Dynamic Stress Intensity Factors for Homogeneous and Smoothly Heterogeneous Materials Using the Interaction Integral Method. Int. J. Solids Struct. 2006, 43, 4830–4866. https://doi.org/10.1016/j.ijsolstr.2005.06.102.Search in Google Scholar

60. Dong, B.; Tian, L.; Pan, B. Tensile Testing of Carbon Fiber Multifilament Using an Advanced Video Extensometer Assisted by Dual–Reflector Imaging. Measurement 2019, 138, 325–331. https://doi.org/10.1016/j.measurement.2019.02.070.Search in Google Scholar

61. Zhang, L.; Nie, J.; Shi, B.; Han, H.; Wu, J.; Cui, Y. Calculation the Opening of Neighboring Surface Cracks in Concrete Structure Based on OFDR Technology. Constr. Build. Mater. 2023, 376, 131073. https://doi.org/10.1016/j.conbuildmat.2023.131073.Search in Google Scholar

62. Shi, X.; Bai, J.; Feng, G.; Wang, K.; Cui, B.; Guo, J.; Yang, X.; Song, C. Show More Crack Propagation Law at the Interface of FRP Wrapped Coal–Backfilling Composite Structure. Constr. Build. Mater. 2022, 344, 128229. https://doi.org/10.1016/j.conbuildmat.2022.128229.Search in Google Scholar

63. Zhou, X. P.; Wang, L. F. A Field–Enriched Finite Element Method for Crack Propagation in Fiber–Reinforced Composite Lamina without Remeshing. Compos. Struct. 2021, 270, 114074. https://doi.org/10.1016/j.compstruct.2021.114074.Search in Google Scholar

64. Zhao, P.; Xie, L. Z.; Fan, Z. C.; Deng, L.; Liu, J. Mutual Interference of Layer Plane and Natural Fracture in the Failure Behavior of Shale and the Mechanism Investigation. Pet. Sci. 2021, 18, 618–640. https://doi.org/10.1007/s12182–020–00510–5.10.1007/s12182-020-00510-5Search in Google Scholar

65. Afshar, A.; Daneshyar, A.; Mohammadi, S. XFEM Analysis of Fiber Bridging in Mixed–Mode Crack Propagation in Composites. Compos. Struct. 2015, 125, 314–327. https://doi.org/10.1016/j.compstruct.2015.02.002.Search in Google Scholar

66. Jebri, L.; Abbassi, F.; Demiral, M.; Soula, M.; Ahmad, F. Experimental and Numerical Analysis of Progressive Damage and Failure Behavior of Carbon Woven–PPS. Compos. Struct. 2020, 243, 112234. https://doi.org/10.1016/j.compstruct.2020.112234.Search in Google Scholar

67. Li, Y.; Yan, S.; Yan, Y.; Zhang, W. Modelling of the Compressive Behavior of 3D Braided Tubular Composites by A Novel Unit Cell. Compos. Struct. 2022, 287, 115303. https://doi.org/10.1016/j.compstruct.2022.115303.Search in Google Scholar

68. Torabi, A. R.; Pirhadi, E. Translaminar Notch Fracture Toughness Expressions for Composite Laminates. Theor. Appl. Fract. Mech. 2022, 119, 103332. https://doi.org/10.1016/j.tafmec.2022.103332.Search in Google Scholar

69. Ayatollahi, M. R.; Heydari–Meybodi, M.; Berto, F.; Yazid Yahya, M. Mixed–Mode Fracture in EPDM/SBR/Nanoclay Rubber Composites: An Experimental and Theoretical Investigation. Composites, Part B 2019, 176, 107312. https://doi.org/10.1016/j.compositesb.2019.107312.Search in Google Scholar

70. Gambarotta, L.; Lagomarsino, S. A Microcrack Damage Model for Brittle Materials. Int. J. Solids Struct. 1993, 30, 177–198. https://doi.org/10.1016/0020–7683(93)90059–G.10.1016/0020-7683(93)90059-GSearch in Google Scholar

71. Fakoor, M.; Khansari, N. M. Mixed Mode I/II Fracture Criterion for Orthotropic Materials Based on Damage Zone Properties. Eng. Fract. Mech. 2016, 153, 407–420. https://doi.org/10.1016/j.engfracmech.2015.11.018.Search in Google Scholar

Received: 2023-10-23
Accepted: 2024-01-17
Published Online: 2024-05-27
Published in Print: 2024-06-25

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 15.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2023-0317/html
Scroll to top button