Home Blast protection of underwater tunnels with 3D auxetic materials
Article
Licensed
Unlicensed Requires Authentication

Blast protection of underwater tunnels with 3D auxetic materials

  • Shuwen Zhang and Tao Fan ORCID logo EMAIL logo
Published/Copyright: May 23, 2024
Become an author with De Gruyter Brill

Abstract

In recent years, the risk of blast attacks on underwater tunnels, important transportation routes, has increased due to the growing prevalence of vicious regional conflicts and global terrorist activities. In this work, we investigate the blast impact behavior of underwater tunnels filled with honeycomb core and covered by solid panels. The core is composed of 3D auxetic materials with high energy absorption compared to conventional honeycombs. In order to improve the stiffness of the auxetic structures, a pair of crossed rods is introduce to each cell. The relative densities of 3D auxetic structures are derived theoretically. The coupling effects of the geometrical parameters on the relative density are investigated. Then the deformation patterns of the underwater tunnels at different blast heights are analyzed. The kinetic energy and absorbed energy are discussed for tunnels with 3D auxetic materials and solid materials. Results show that tunnels composed with 3D reinforced auxetic structures can absorb much more energy than solid ones. Moreover, localized damage is observed which means greater chance of survival and smaller repairs after extreme impact. Finally, a stiffness-improved 3D reinforced auxetic structure is presented to enhance the tunnel’s strength and stability further.


Corresponding author: Tao Fan, School of Civil Engineering, Tianjin University, Tianjin 300350, China, E-mail:

  1. Research ethics: Not applicable.

  2. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: None declared.

  5. Data availability: Not applicable.

References

1. Yu, H. T.; Yan, X.; Bobet, A.; Yuan, Y.; Xu, G. P.; Su, Q. K. Multi-Point Shaking Table Test of a Long Tunnel Subjected to Non-Uniform Seismic Loadings. Bull. Earthq. Eng. 2018, 16, 1041–1059. https://doi.org/10.1007/s10518-017-0223-6.Search in Google Scholar

2. Gong, F. Q.; Luo, Y.; Li, X. B.; Si, X. F.; Tao, M. Experimental Simulation Investigation on Rockburst Induced by Spalling Failure in Deep Circular Tunnels. Tunn. Undergr. Space Technol. 2018, 81, 413–427. https://doi.org/10.1016/j.tust.2018.07.035.Search in Google Scholar

3. Li, W. T.; Yang, N.; Mei, Y. C.; Zhang, Y. H.; Wang, L.; Ma, H. Y. Experimental Investigation of the Compression-Bending Property of the Casing Joints in a Concrete Filled Steel Tubular Supporting Arch for Tunnel Engineering. Tunn. Undergr. Space Technol. 2020, 96, 103184. https://doi.org/10.1016/j.tust.2019.103184.Search in Google Scholar

4. Wu, K.; Shao, Z. S.; Qin, S.; Li, B. X. Determination of Deformation Mechanism and Countermeasures in Silty Clay Tunnel. J. Perform. Constr. Facil. 2020, 34 (1), 04019095. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001381.Search in Google Scholar

5. Tian, X. X.; Song, Z. P.; Wang, J. B. Study on the Propagation Law of Tunnel Blasting Vibration in Stratum and Blasting Vibration Reduction Technology. Soil Dynam. Earthq. Eng. 2019, 126, 105813. https://doi.org/10.1016/j.soildyn.2019.105813.Search in Google Scholar

6. Cole, R. H. Underwater Explosions; Princeton University Press: Princeton, 1948.10.5962/bhl.title.48411Search in Google Scholar

7. Yang, G. D.; Wang, G. H.; Lu, W.; Zhao, X.; Yan, P.; Chen, M. Numerical Modeling of Surface Explosion Effects on Shallow-Buried Box Culvert Behavior During the Water Diversion. Thin-Walled Struct. 2018, 133, 153–168. https://doi.org/10.1016/j.tws.2018.09.039.Search in Google Scholar

8. Wang, X.; Wang, M. N.; Yu, L.; Tian, Y.; Yan, G. Influence of High Humidity and Salt-Rich Spray Environment on Ventilation Effect in Urban Undersea Road Tunnel. Tunn. Undergr. Space Technol. 2019, 94, 103109. https://doi.org/10.1016/j.tust.2019.103109.Search in Google Scholar

9. Li, C. D.; Zhang, W.; Zhu, H. H.; Wang, P.; Ren, J. T.; Spencer, B. F. Fast Vibration Characteristics Analysis of an Underwater Shield Tunnel Using the Accelerometer Network Enhanced by Edge Computing. Measurement 2019, 141, 52–61. https://doi.org/10.1016/j.measurement.2019.03.053.Search in Google Scholar

10. Love, A. E. H. A Treatise on the Mathematical Theory of Elasticity; Dover Publications: New York, 1944.Search in Google Scholar

11. Lu, Z. X.; Li, X.; Yang, Z. Y.; Xie, F. Novel Structure with Negative Poisson’s Ratio and Enhanced Young’s Modulus. Compos. Struct. 2016, 138, 243–252. https://doi.org/10.1016/j.compstruct.2015.11.036.Search in Google Scholar

12. Berinskii, I. E. Elastic Networks to Model Auxetic Properties of Cellular Materials. Int. J. Mech. Sci. 2016, 115–116, 481–488. https://doi.org/10.1016/j.ijmecsci.2016.07.038.Search in Google Scholar

13. Dirrenberger, J.; Forest, S.; Jeulin, D. Elastoplasticity of Auxetic Materials. Comput. Mater. Sci. 2012, 64, 57–61. https://doi.org/10.1016/j.commatsci.2012.03.036.Search in Google Scholar

14. Carolin, K.; Yvonne, L. R. A Systematic Approach to Identify Cellular Auxetic Materials. Smart Mater. Struct. 2015, 24, 025013. https://doi.org/10.1088/0964-1726/24/2/025013.Search in Google Scholar

15. Papadopoulou, A.; Laucks, J.; Tibbits, S. Auxetic Materials in Design and Architecture. Nat. Rev. Mater. 2017, 2 (12), 17078. https://doi.org/10.1038/natrevmats.2017.78.Search in Google Scholar

16. Sergey, A. L.; Alexander, L. K.; Yury, O. S.; Anastasia, D. U.; Alexander, V. V. Continuum Micro-Dilatation Modeling of Auxetic Metamaterials. Int. J. Solids Struct. 2018, 132–133, 188–200. https://doi.org/10.1016/j.ijsolstr.2017.09.022.Search in Google Scholar

17. Lakes, R. Foam Structures with a Negative Poisson’s Ratio. Science 1987, 235, 1038–1041. https://doi.org/10.1126/science.235.4792.1038.Search in Google Scholar PubMed

18. Hasan, A. R.; Wojciech, S. The Development of a New Shock Absorbing Uniaxial Graded Auxetic Damper (UGAD). Materials 2019, 12 (16), 2573. https://doi.org/10.3390/ma12162573.Search in Google Scholar PubMed PubMed Central

19. Nejc, N.; Lovre, K. O.; Zoran, R.; Matej, V. Compression and Shear Behaviour of Graded Chiral aAuxetic Structures. Mech. Mater. 2020, 148, 103524. https://doi.org/10.1016/j.mechmat.2020.103524.Search in Google Scholar

20. Jakub, M.; Tomasz, S. Blast Resistance of Sandwich Plate with Auxetic Anti-Tetrachiral Core. Vib. Phys. Syst. 2020, 31 (3), 2020317. https://doi.org/10.21008/j.0860-6897.2020.3.17.Search in Google Scholar

21. Vânia, P.; Pedro, S.; João, B.; Hernâni, D.; Maria, H. D.; Fernando, C.; Raul, F. Low-Velocity Impact Response of Auxetic Seamless Knits Combined with Non-Newtonian Fluids. Polymers 2022, 14 (10), 2065. https://doi.org/10.3390/polym14102065.Search in Google Scholar PubMed PubMed Central

22. Gibson, L. J.; Ashby, M. F. Cellular Solids: Structure and Properties; Cambridge University Press: Cambridge, 1997.10.1017/CBO9781139878326Search in Google Scholar

23. Finnegan, K.; Kooistra, G.; Wadley, H. N. G.; Deshpande, V. S. The Compressive Response of Carbon Fiber Composite Pyramidal Truss Sandwich Cores. Int. J. Mater. Res. 2007, 98 (12), 1264–1272. https://doi.org/10.3139/146.101594.Search in Google Scholar

24. Queheillalt, D. T.; Wadley, H. N. G. Hollow Pyramidal Lattice Truss Structures. Int. J. Mater. Res. 2011, 102 (4), 389–400. https://doi.org/10.3139/146.110489.Search in Google Scholar

25. Ohser, J.; Ferrero, C.; Wirjadi, O.; Kuznetsova, A.; Düll, J.; Rack, A. Estimation of the Probability of Finite Percolation in Porous Microstructures from Tomographic Images. Int. J. Mater. Res. 2012, 103 (2), 184–191. https://doi.org/10.3139/146.110669.Search in Google Scholar

26. Lakes, R.; Elms, K. Indentability of Conventional and Negative Poisson’s Ratio Foams. J. Comput. Mater. 1993, 27 (12), 1193–1202. https://doi.org/10.1177/002199839302701203.Search in Google Scholar

27. Alderson, K. L.; Simkins, V. R.; Coenen, V. L.; Davies, P. J.; Alderson, A.; Evans, K. E. How to Make Auxetic Fibre Reinforced Composites. Phys. Status Solidi 2005, 242 (3), 509–518. https://doi.org/10.1002/pssb.200460371.Search in Google Scholar

28. Scarpa, F.; Tomlin, P. J. On the Transverse Shear Modulus of Negative Poisson’s Ratio Honeycomb Structures. Fatig. Fract. Eng. Mater. 2000, 23 (8), 717–720. https://doi.org/10.1046/j.1460-2695.2000.00278.x.Search in Google Scholar

29. Bezazi, A.; Scarpa, F. Tensile Fatigue of Conventional and Negative Poisson’s Ratio Open Cell PU Foams. Int. J. Fatig. 2009, 31 (3), 488–494. https://doi.org/10.1016/j.ijfatigue.2008.05.005.Search in Google Scholar

30. Chan, N.; Evans, K. E. Fabrication Methods for Auxetic Foams. J. Mater. Sci. 1997, 32 (22), 5945–5953. https://doi.org/10.1023/A:1018606926094.10.1023/A:1018606926094Search in Google Scholar

31. Evans, K. E.; Alderson, A. Auxetic Materials: Functional Materials and Structures from Lateral Thinking. Adv. Mater. 2000, 12 (9), 617–628. https://doi.org/10.1002/(SICI)1521-4095(200005)12:9<617::AID-ADMA617>3.0.CO;2-3.10.1002/(SICI)1521-4095(200005)12:9<617::AID-ADMA617>3.0.CO;2-3Search in Google Scholar

32. Gabriele, I.; Phuong, T.; Tuan, D. N.; Peter, V. S. L. A Numerical Study of Auxetic Composite Panels Under Blast Loadings. Comput. Struct. 2016, 135, 339–352. https://doi.org/10.1016/j.compstruct.2015.09.038.Search in Google Scholar

33. Critchley, R.; Hazael, R.; Bhatti, K.; Wood, D.; Peare, A.; Johnson, S.; Temple, T. Blast Mitigation Using Polymeric 3D Printed Auxetic Re-Entrant Honeycomb Structures: A Preliminary Study. Int. J. Prot. Struct. 2022, 13 (3), 469–486. https://doi.org/10.1177/20414196211052062.Search in Google Scholar

34. Fu, M. H.; Chen, Y.; Hu, L. L. A Novel Auxetic Honeycomb with Enhanced In-Plane Stiffness and Buckling Strength. Comput. Struct. 2017, 160, 574–585. https://doi.org/10.1016/j.compstruct.2016.10.090.Search in Google Scholar

35. Wei, K.; Peng, Y.; Qu, Z. L.; Pei, Y. M.; Fang, D. N. A Cellular Metastructure Incorporating Coupled Negative Thermal Expansion and Negative Poisson’s Ratio. Int. J. Solids Struct. 2018, 150, 255–267. https://doi.org/10.1016/j.ijsolstr.2018.06.018.Search in Google Scholar

36. Qiao, J. X.; Chen, C. Q. In-Plane Crushing of a Hierarchical Honeycomb. Int. J. Solids Struct. 2016, 85–86, 57–66. https://doi.org/10.1016/j.ijsolstr.2016.02.003.Search in Google Scholar

37. Orton, S. L.; Chiarito, V. P.; Minor, J. K.; Coleman, T. G. Experimental Testing of CFRP-Strengthened Reinforced Concrete Slab Elements Loaded by Close-In Blast. J. Struct. Eng. 2014, 140 (2), 04013060. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000821.Search in Google Scholar

Received: 2022-11-14
Accepted: 2023-12-20
Published Online: 2024-05-23
Published in Print: 2024-06-25

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 16.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2022-0461/html
Scroll to top button