Abstract
Surface hardening techniques of steel are of great practical interest for applications in various industrial sectors. Boriding is one of the most economical choices. However, the chief deterrent to the widespread application of the technique is the difficulty in attaining a thick, dense boride layer. To solve this problem, a paste boriding process was performed on the surface of AISI 410 steel by introducing 6 wt.% CeO2 addition into the boriding agent. The microstructure of the boride layer is comprised of (Fe, Cr)B and (Fe, Cr)2B, which lie in the external and internal layers of the boride layer, respectively. CeO2 addition makes it possible to prepare a thick, dense boride layer on the surface of the steel substrate, thereby improving both wear and corrosion resistance of the steel. The catalysis mechanism of the rare earth element Ce can be ascribed to three aspects. First, CeO2 addition can take part in the chemical reactions involved in the boriding process to produce more active boron atoms. Second, Ce can facilitate the adsorption of active boron atoms onto the surface of the steel through preventing the formation of iron oxides on the steel’s surface. Third, Ce can diffuse into the surface of the steel and generate severe lattice distortion due to large atomic size, thereby promoting the boron diffusion. These results provide a high-quality, low-cost pathway for the surface hardening of steel in practical industrial applications.
-
Research ethics: Not applicable.
-
Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Competing interests: The authors state no competing interests.
-
Research funding: The authors would like to thank the Natural Science Research of the Jiangsu Higher Education Institutions of China (No. 22KJA460011) for the support.
-
Data availability: Not applicable.
References
1. Liu, Y. R.; Ye, D.; Yong, Q. L.; Su, J.; Zhao, K. Y.; Jiang, W. J. Iron Steel Res. Int. 2011, 18 (11), 60–66. https://doi.org/10.13228/j.boyuan.issn1006-706x.2011.11.007.Search in Google Scholar
2. Campos, I.; Ramírez, G.; Figueroa, U.; Martínez, J.; Morales, O. Appl. Surf. Sci. 2007, 253 (7), 3469–3475. https://doi.org/10.1016/j.apsusc.2006.07.046.Search in Google Scholar
3. Dybkov, V. I.; Lengauer, W.; Barmak, K. J. Alloys Compd. 2005, 398 (1–2), 113–122. https://doi.org/10.1016/j.jallcom.2005.02.033.Search in Google Scholar
4. Uslu, I.; Comert, H.; Ipek, M.; Ozdemir, O.; Bindal, C. Mater. Des. 2007, 28 (1), 55–61. https://doi.org/10.1016/j.matdes.2005.06.013.Search in Google Scholar
5. Keddam, M.; Ortiz-Dominguez, M.; Elias-Espinosa, M.; Arenas-Flores, A.; Zuno-Silva, J.; Zamarripa-Zepeda, D.; Gomez-Vargas, O. A. Metall. Mater. Trans. A 2018, 49 (5), 1895–1907. https://doi.org/10.1007/s11661-018-4535-1.Search in Google Scholar
6. Atik, E.; Yunker, U.; Meric, C. Tribol. Int. 2003, 36 (3), 155–161. https://doi.org/10.1016/s0301-679x(02)00069-5.Search in Google Scholar
7. Kheyrodin, M.; Habibolahzadeh, A.; Mousavi, S. B. Prot. Met. Phys. Chem. Surf. 2017, 53 (1), 105–111. https://doi.org/10.1134/S2070205117010117.Search in Google Scholar
8. Kartal, G.; Kahvecioglu, O.; Timur, S. Surf. Coat. Technol. 2006, 200 (11), 3590–3593. https://doi.org/10.1016/j.surfcoat.2005.02.210.Search in Google Scholar
9. Rodríguez-Castro, G.; Campos-Silva, I.; Martínez-Trinidad, J.; Figueroa-López, U.; Melendez-Morales, D.; Vargas-Hernández, J. Adv. Mater. Res. 2009, 65, 63–68. https://doi.org/10.4028/www.scientific.net/AMR.65.63.Search in Google Scholar
10. Tavakoli, H.; Mousavi Khoie, S. M. Mater. Chem. Phys. 2010, 124 (2–3), 1134–1138. https://doi.org/10.1016/j.matchemphys.2010.08.047.Search in Google Scholar
11. Rodríguez-Castro, G.; Campos-Silva, I.; Chávez-Gutiérrez, E.; Martínez-Trinidad, J.; Hernández-Sánchez, E.; Torres-Hernández, A. Surf. Coat. Technol. 2013, 215, 291–299. https://doi.org/10.1016/j.surfcoat.2012.05.145.Search in Google Scholar
12. Campos, I.; Oseguera, J.; Figueroa, U.; García, J. A.; Bautista, O.; Kelemenis, G. Mater. Sci. Eng. A 2003, 352 (1–2), 261–265. https://doi.org/10.1016/S0921-5093(02)00910-3.Search in Google Scholar
13. Chen, T.; Koyama, S. Solid State Sci. 2020, 107, 106369–106373. https://doi.org/10.1016/j.solidstatesciences.2020.106369.Search in Google Scholar
14. Makuch, N.; Dziarski, P. Surf. Coat. Technol. 2021, 405, 126508–126518. https://doi.org/10.1016/j.surfcoat.2020.126508.Search in Google Scholar
15. Dziarski, P.; Makuch, N. Eng. Fract. Mech. 2022, 275, 108842–108859. https://doi.org/10.1016/j.engfracmech.2022.108842.Search in Google Scholar
16. Yang, H. P.; Wu, X. C.; Min, Y. A.; Wu, T. R.; Gui, J. Z. Surf. Coat. Technol. 2013, 228, 229–233. https://doi.org/10.1016/j.surfcoat.2013.04.033.Search in Google Scholar
17. Campos-Silva, I.; Ortiz-Dominguez, M.; Martínez-Trinidad, J.; López-Perrusquia, N.; Hernández-Sánchez, E.; Ramírez-Sandoval, G.; Escobar-Galindo, R. Defect Diffus. Forum 2010, 297–301 (2), 1284–1289. https://doi.org/10.4028/www.scientific.net/DDF.297-301.1284.Search in Google Scholar
18. Ramirez, G.; Campos, I.; Balankin, A. Mater. Sci. Forum 2007, 553, 21–26. https://doi.org/10.4028/www.scientific.net/MSF.553.21.Search in Google Scholar
19. Doñu Ruiz, M. A.; López Perrusquia, N.; Sánchez Huerta, D.; Torres San Miguel, C. R.; Urriolagoitia Calderón, G. M.; Cerillo Moreno, E. A.; Cortes Suarez, J. V. Thin Solid Films 2015, 596, 147–154. https://doi.org/10.1016/j.tsf.2015.07.086.Search in Google Scholar
20. He, X. L.; Xiao, H. P.; Fevzi Ozaydin, M.; Balzuweit, K.; Liang, H. Surf. Coat. Technol. 2015, 263, 21–26. https://doi.org/10.1016/j.surfcoat.2014.12.071.Search in Google Scholar
21. Lu, X. X.; Liang, C.; Gao, X. X.; An, J.; Yang, X. H. ISIJ Int. 2011, 51 (5), 799–804. https://doi.org/10.2355/isijinternational.51.799.Search in Google Scholar
22. Zhang, Y. W.; Zheng, Q.; Fan, Y.; Mei, S. Q.; Lygdenov, B.; Guryev, A. Mater. Mech. Eng. 2021, 45 (7), 22–26. https://doi.org/10.11973/jxgccl202107005.Search in Google Scholar
23. Bai, G. M. Met. Form. 2021, 1, 73–76. https://doi.org/10.3969/j.issn.1674-165X.2021.01.021.Search in Google Scholar
24. Wang, L.; Wu, Y. M.; Bian, G. Y.; Xie, X. Y. Surf. Technol. 2019, 48 (2), 94–99. https://doi.org/10.16490/j.cnki.issn.1001-3660.2019.02.014.Search in Google Scholar
25. Zhang, Y.; Bao, C. G.; Hou, S. Z. J. Xi’an Jiaotong Univ. 2014, 48 (10), 96–100. https://doi.org/10.7652/xjtuxb201410015.Search in Google Scholar
26. Tian, X. Research on the Application of Pack Boronizing in Petroleum Machinery. MSc Thesis, Jilin University, China, 2008.Search in Google Scholar
27. Wang, X. D. Study on the Boriding Process of AISI 410 Stainless Steel Paste and its Microstructure and Properties of Borided Layer. MSc Thesis, Jiangsu University of Science and Technology, China, 2022.Search in Google Scholar
28. Han, D. W.; Zhang, J. X. Preparation and Display Technologies of Metallographic Samples; Press of Central South University, 2005.Search in Google Scholar
29. Kariofillis, G. K.; Kiourtsidis, G. E.; Tsipas, D. N. Surf. Coat. Technol. 2006, 201 (1–2), 19–24. https://doi.org/10.1016/j.surfcoat.2005.10.025.Search in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Original Papers
- Experimental investigation and thermodynamic analysis of TiC–Fe cermets with Mo additions
- Investigations on porous silicon nitride ceramics prepared by the gel-casting method
- Catalysis effect of rare earth element Ce on paste boriding treatment of AISI 410 steel
- Effect of nitrogen content on the static recrystallization and precipitation behaviors of vanadium–titanium microalloyed steels
- Effects of addition of Er and Zr on microstructure and mechanical properties of Al–Cu–Mn–Si–Mg alloy
- The quasi-binary phase diagrams of R 2Fe14B–Ce2Fe14B (R = Nd, Pr) systems
- Trivalent Gd incorporated Zn2SiO4 phosphor material for EPR and luminescence investigations
- Effects of translaminar edge crack and fiber angle on fracture toughness and crack propagation behaviors of laminated carbon fiber composites
- Blast protection of underwater tunnels with 3D auxetic materials
- News
- DGM – Deutsche Gesellschaft für Materialkunde
Articles in the same Issue
- Frontmatter
- Original Papers
- Experimental investigation and thermodynamic analysis of TiC–Fe cermets with Mo additions
- Investigations on porous silicon nitride ceramics prepared by the gel-casting method
- Catalysis effect of rare earth element Ce on paste boriding treatment of AISI 410 steel
- Effect of nitrogen content on the static recrystallization and precipitation behaviors of vanadium–titanium microalloyed steels
- Effects of addition of Er and Zr on microstructure and mechanical properties of Al–Cu–Mn–Si–Mg alloy
- The quasi-binary phase diagrams of R 2Fe14B–Ce2Fe14B (R = Nd, Pr) systems
- Trivalent Gd incorporated Zn2SiO4 phosphor material for EPR and luminescence investigations
- Effects of translaminar edge crack and fiber angle on fracture toughness and crack propagation behaviors of laminated carbon fiber composites
- Blast protection of underwater tunnels with 3D auxetic materials
- News
- DGM – Deutsche Gesellschaft für Materialkunde