Home Catalysis effect of rare earth element Ce on paste boriding treatment of AISI 410 steel
Article
Licensed
Unlicensed Requires Authentication

Catalysis effect of rare earth element Ce on paste boriding treatment of AISI 410 steel

  • Mingxiao Shi , Jingyong Li EMAIL logo , Weidong Mao , Shengliang Li , Zhidong Yang and Xiang Ma
Published/Copyright: May 17, 2024
Become an author with De Gruyter Brill

Abstract

Surface hardening techniques of steel are of great practical interest for applications in various industrial sectors. Boriding is one of the most economical choices. However, the chief deterrent to the widespread application of the technique is the difficulty in attaining a thick, dense boride layer. To solve this problem, a paste boriding process was performed on the surface of AISI 410 steel by introducing 6 wt.% CeO2 addition into the boriding agent. The microstructure of the boride layer is comprised of (Fe, Cr)B and (Fe, Cr)2B, which lie in the external and internal layers of the boride layer, respectively. CeO2 addition makes it possible to prepare a thick, dense boride layer on the surface of the steel substrate, thereby improving both wear and corrosion resistance of the steel. The catalysis mechanism of the rare earth element Ce can be ascribed to three aspects. First, CeO2 addition can take part in the chemical reactions involved in the boriding process to produce more active boron atoms. Second, Ce can facilitate the adsorption of active boron atoms onto the surface of the steel through preventing the formation of iron oxides on the steel’s surface. Third, Ce can diffuse into the surface of the steel and generate severe lattice distortion due to large atomic size, thereby promoting the boron diffusion. These results provide a high-quality, low-cost pathway for the surface hardening of steel in practical industrial applications.


Corresponding author: Jingyong Li, School of Materials Science and Engineering, Jiangsu University of Science and Technology, No. 2 Mengxi Road, Zhenjiang, 212003, P.R. China, E-mail:

  1. Research ethics: Not applicable.

  2. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The authors state no competing interests.

  4. Research funding: The authors would like to thank the Natural Science Research of the Jiangsu Higher Education Institutions of China (No. 22KJA460011) for the support.

  5. Data availability: Not applicable.

References

1. Liu, Y. R.; Ye, D.; Yong, Q. L.; Su, J.; Zhao, K. Y.; Jiang, W. J. Iron Steel Res. Int. 2011, 18 (11), 60–66. https://doi.org/10.13228/j.boyuan.issn1006-706x.2011.11.007.Search in Google Scholar

2. Campos, I.; Ramírez, G.; Figueroa, U.; Martínez, J.; Morales, O. Appl. Surf. Sci. 2007, 253 (7), 3469–3475. https://doi.org/10.1016/j.apsusc.2006.07.046.Search in Google Scholar

3. Dybkov, V. I.; Lengauer, W.; Barmak, K. J. Alloys Compd. 2005, 398 (1–2), 113–122. https://doi.org/10.1016/j.jallcom.2005.02.033.Search in Google Scholar

4. Uslu, I.; Comert, H.; Ipek, M.; Ozdemir, O.; Bindal, C. Mater. Des. 2007, 28 (1), 55–61. https://doi.org/10.1016/j.matdes.2005.06.013.Search in Google Scholar

5. Keddam, M.; Ortiz-Dominguez, M.; Elias-Espinosa, M.; Arenas-Flores, A.; Zuno-Silva, J.; Zamarripa-Zepeda, D.; Gomez-Vargas, O. A. Metall. Mater. Trans. A 2018, 49 (5), 1895–1907. https://doi.org/10.1007/s11661-018-4535-1.Search in Google Scholar

6. Atik, E.; Yunker, U.; Meric, C. Tribol. Int. 2003, 36 (3), 155–161. https://doi.org/10.1016/s0301-679x(02)00069-5.Search in Google Scholar

7. Kheyrodin, M.; Habibolahzadeh, A.; Mousavi, S. B. Prot. Met. Phys. Chem. Surf. 2017, 53 (1), 105–111. https://doi.org/10.1134/S2070205117010117.Search in Google Scholar

8. Kartal, G.; Kahvecioglu, O.; Timur, S. Surf. Coat. Technol. 2006, 200 (11), 3590–3593. https://doi.org/10.1016/j.surfcoat.2005.02.210.Search in Google Scholar

9. Rodríguez-Castro, G.; Campos-Silva, I.; Martínez-Trinidad, J.; Figueroa-López, U.; Melendez-Morales, D.; Vargas-Hernández, J. Adv. Mater. Res. 2009, 65, 63–68. https://doi.org/10.4028/www.scientific.net/AMR.65.63.Search in Google Scholar

10. Tavakoli, H.; Mousavi Khoie, S. M. Mater. Chem. Phys. 2010, 124 (2–3), 1134–1138. https://doi.org/10.1016/j.matchemphys.2010.08.047.Search in Google Scholar

11. Rodríguez-Castro, G.; Campos-Silva, I.; Chávez-Gutiérrez, E.; Martínez-Trinidad, J.; Hernández-Sánchez, E.; Torres-Hernández, A. Surf. Coat. Technol. 2013, 215, 291–299. https://doi.org/10.1016/j.surfcoat.2012.05.145.Search in Google Scholar

12. Campos, I.; Oseguera, J.; Figueroa, U.; García, J. A.; Bautista, O.; Kelemenis, G. Mater. Sci. Eng. A 2003, 352 (1–2), 261–265. https://doi.org/10.1016/S0921-5093(02)00910-3.Search in Google Scholar

13. Chen, T.; Koyama, S. Solid State Sci. 2020, 107, 106369–106373. https://doi.org/10.1016/j.solidstatesciences.2020.106369.Search in Google Scholar

14. Makuch, N.; Dziarski, P. Surf. Coat. Technol. 2021, 405, 126508–126518. https://doi.org/10.1016/j.surfcoat.2020.126508.Search in Google Scholar

15. Dziarski, P.; Makuch, N. Eng. Fract. Mech. 2022, 275, 108842–108859. https://doi.org/10.1016/j.engfracmech.2022.108842.Search in Google Scholar

16. Yang, H. P.; Wu, X. C.; Min, Y. A.; Wu, T. R.; Gui, J. Z. Surf. Coat. Technol. 2013, 228, 229–233. https://doi.org/10.1016/j.surfcoat.2013.04.033.Search in Google Scholar

17. Campos-Silva, I.; Ortiz-Dominguez, M.; Martínez-Trinidad, J.; López-Perrusquia, N.; Hernández-Sánchez, E.; Ramírez-Sandoval, G.; Escobar-Galindo, R. Defect Diffus. Forum 2010, 297–301 (2), 1284–1289. https://doi.org/10.4028/www.scientific.net/DDF.297-301.1284.Search in Google Scholar

18. Ramirez, G.; Campos, I.; Balankin, A. Mater. Sci. Forum 2007, 553, 21–26. https://doi.org/10.4028/www.scientific.net/MSF.553.21.Search in Google Scholar

19. Doñu Ruiz, M. A.; López Perrusquia, N.; Sánchez Huerta, D.; Torres San Miguel, C. R.; Urriolagoitia Calderón, G. M.; Cerillo Moreno, E. A.; Cortes Suarez, J. V. Thin Solid Films 2015, 596, 147–154. https://doi.org/10.1016/j.tsf.2015.07.086.Search in Google Scholar

20. He, X. L.; Xiao, H. P.; Fevzi Ozaydin, M.; Balzuweit, K.; Liang, H. Surf. Coat. Technol. 2015, 263, 21–26. https://doi.org/10.1016/j.surfcoat.2014.12.071.Search in Google Scholar

21. Lu, X. X.; Liang, C.; Gao, X. X.; An, J.; Yang, X. H. ISIJ Int. 2011, 51 (5), 799–804. https://doi.org/10.2355/isijinternational.51.799.Search in Google Scholar

22. Zhang, Y. W.; Zheng, Q.; Fan, Y.; Mei, S. Q.; Lygdenov, B.; Guryev, A. Mater. Mech. Eng. 2021, 45 (7), 22–26. https://doi.org/10.11973/jxgccl202107005.Search in Google Scholar

23. Bai, G. M. Met. Form. 2021, 1, 73–76. https://doi.org/10.3969/j.issn.1674-165X.2021.01.021.Search in Google Scholar

24. Wang, L.; Wu, Y. M.; Bian, G. Y.; Xie, X. Y. Surf. Technol. 2019, 48 (2), 94–99. https://doi.org/10.16490/j.cnki.issn.1001-3660.2019.02.014.Search in Google Scholar

25. Zhang, Y.; Bao, C. G.; Hou, S. Z. J. Xi’an Jiaotong Univ. 2014, 48 (10), 96–100. https://doi.org/10.7652/xjtuxb201410015.Search in Google Scholar

26. Tian, X. Research on the Application of Pack Boronizing in Petroleum Machinery. MSc Thesis, Jilin University, China, 2008.Search in Google Scholar

27. Wang, X. D. Study on the Boriding Process of AISI 410 Stainless Steel Paste and its Microstructure and Properties of Borided Layer. MSc Thesis, Jiangsu University of Science and Technology, China, 2022.Search in Google Scholar

28. Han, D. W.; Zhang, J. X. Preparation and Display Technologies of Metallographic Samples; Press of Central South University, 2005.Search in Google Scholar

29. Kariofillis, G. K.; Kiourtsidis, G. E.; Tsipas, D. N. Surf. Coat. Technol. 2006, 201 (1–2), 19–24. https://doi.org/10.1016/j.surfcoat.2005.10.025.Search in Google Scholar

Received: 2022-09-13
Accepted: 2024-01-06
Published Online: 2024-05-17
Published in Print: 2024-06-25

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 15.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2022-0394/html
Scroll to top button