Startseite Preparations and applications of organic conducting polymers/graphene composites in heavy metal ion sensing: a review
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Preparations and applications of organic conducting polymers/graphene composites in heavy metal ion sensing: a review

  • Ismaila Diédhiou , Balla Fall , Cheikh Gaye , Mohamed Lamine Sall , Abdou Karim Diagne Diaw , Diariatou Gningue-Sall , Modou Fall ORCID logo EMAIL logo und Noureddine Raouafi ORCID logo
Veröffentlicht/Copyright: 25. Januar 2023
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

This review focuses on the trends and challenges, over the last ten years, in the development of electrochemical sensors based on organic conducting polymers and graphene composites for the determination of trace heavy metal ions in water. Some of these materials taken alone still have significant limitations for the selective and ultrasensitive detection of target species. Hence, it has become crucial to develop new composite materials able to overcome these limitations and to improve the sensitivity to heavy metal ions. The properties resulting from the combination of these two types of materials, which increased the electrochemical performance by offering many advantages such as improvement of catalytic activity and conductivity, fast electron transfer kinetics, large surface area and high sensitivity were reviewed. This review also presents in detail various methods (chemical, electrochemical and hydrothermal) used to prepare composites and characterization methods (spectroscopic, microscopic, electrochemical, etc.). The applications of these composites in electroanalysis of heavy metal ions have been discussed and summarized. Also, electrochemical detection methods, particularly those called “Anodic Stripping Voltammetry” have been explained and their uses in the detection of heavy metal ions in natural water have been highlighted, and the results provided.


Corresponding author: Modou Fall, Laboratory of Organic Physical Chemistry and Environmental Analyses, Faculty of Sciences and Techniques, Cheikh Anta Diop University, Dakar, Senegal, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The authors are grateful to the International Science Program (ISP), University of Uppsala (Sweden) under Grant to African Network of Electroanalytical Chemists [IPICS/ANEC] and to TWAS, The World Academy of Science for the Advancement of Science in developing countries under No. 16-499RG/CHE/AF/AC_G–FR3240293299.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Nguyen, D. N., Yoon, H. Polymer 2016, 118, 8. https://doi.org/10.3390/polym8040118.Suche in Google Scholar PubMed PubMed Central

2. Yang, Y., Yuan, W., Li, S., Yang, X., Xu, J., Jiang, Y. Electrochim. Acta 2015, 165, 323. https://doi.org/10.1016/j.electacta.2015.03.052.Suche in Google Scholar

3. Li, X., Zhang, X., Yang, H. Chin. J. Popul. Resour. Environ. 2020, 18, 9. https://doi.org/10.1016/j.cjpre.2021.04.010.Suche in Google Scholar

4. Garcia-Cabezon, C., Salvo-Comino, C., Garcia-Hernandez, C., Rodriguez-Mendez, M. L., Martin-Pedrosa, F. Surf. Coat. Technol. 2020, 403, 126395. https://doi.org/10.1016/j.surfcoat.2020.126395.Suche in Google Scholar

5. Baker, C. O., Huang, X., Nelson, W., Kaner, R. B. Chem. Soc. Rev. 2017, 46, 1510. https://doi.org/10.1039/C6CS00555A.Suche in Google Scholar PubMed

6. Huynh, T. P., Sharma, P. S., Sosnowska, M., D’Souza, F., Kutner, W. Prog. Polym. Sci. 2015, 47, 1. https://doi.org/10.1016/j.progpolymsci.2015.04.009.Suche in Google Scholar

7. Song, J. K., Do, K., Koo, J. H., Son, D., Kim, D. H. MRS Bull. 2019, 44, 643. https://doi.org/10.1557/MRS.2019.183.Suche in Google Scholar

8. Wu, X., Peng, H. Sci. Bull. 2019, 64, 634. https://doi.org/10.1016/j.scib.2019.04.011.Suche in Google Scholar PubMed

9. Sall, M. L., Diaw, A. K. D., Gningue-Sall, D., Chevillot-Biraud, A., Oturan, N., Oturan, M. A., Fourdrin, C., Huguenot, D., Aaron, J. J. Environ. Sci. Pollut. Res. 2018, 25, 8581. https://doi.org/10.1007/s11356-017-1111-y.Suche in Google Scholar PubMed

10. Sall, M. L., Diaw, A. K. D., Gningue-Sall, D., Chevillot-Biraud, A., Oturan, N., Oturan, M. A., Aaron, J. J. Environ. Sci. Pollut. Res. 2017, 24, 21111. https://doi.org/10.1007/s11356-017-9713-y.Suche in Google Scholar PubMed

11. Philips, M. F., Gopalan, A. I., Lee, K. P. J. Hazard Mater. 2012, 237–238, 46–54. https://doi.org/10.1016/j.jhazmat.2012.07.069.Suche in Google Scholar PubMed

12. Huang, H., Zhu, W., Gao, X., Liu, X., Ma, H. Anal. Chim. Acta 2016, 947, 32. https://doi.org/10.1016/j.aca.2016.10.012.Suche in Google Scholar PubMed

13. Zaaba, N. I., Foo, K. L., Hashim, U., Tan, S. J., Liu, W. W., Voon, C. H. Procedia Eng. 2017, 184, 469. https://doi.org/10.1016/j.proeng.2017.04.118.Suche in Google Scholar

14. Zhang, Y., Shen, J., Li, H., Wang, L., Cao, D., Feng, X., Liu, Y., Ma, Y., Wang, L.. Chem. Rec. 2016, 16, 273. https://doi.org/10.1002/tcr.201500236.Suche in Google Scholar PubMed

15. Kim, S., Hwang, B.. Mater. Des. 2018, 160, 572–577. https://doi.org/10.1016/j.matdes.2018.09.051.Suche in Google Scholar

16. Singh, E., Meyyappan, M., Nalwa, H. S. ACS Appl. Mater. Interfaces 2017, 9, 34544. https://doi.org/10.1021/acsami.7b07063.Suche in Google Scholar PubMed

17. Zhou, M., Guo, S. ChemCatChem 2015, 7, 2744. https://doi.org/10.1002/cctc.201500198.Suche in Google Scholar

18. Zhong, F., Liu, Z., Han, Y., Guo, Y. Electroanalysis 2019, 31, 1182. https://doi.org/10.1002/elan.201900048.Suche in Google Scholar

19. Zunita, M., Makertiharta, I. G. B. N., Irawanti, R., Prasetya, N., Wenten, I. G. IOP Conf. Ser. Mater. Sci. Eng. 2018, 395, 012005. https://doi.org/10.1088/1757-899X/395/1/012005.Suche in Google Scholar

20. Zunita, M., Irawanti, R., Koesmawati, T. A., Lugito, G., Wentena, I. G. Chem. Eng. Trans. 2020, 82, 415. https://doi.org/10.3303/CET2082070.Suche in Google Scholar

21. Zunita, M., Hidalgo, M. Membranes 2021, 11, 269. https://doi.org/10.3390/membranes11040269.Suche in Google Scholar PubMed PubMed Central

22. Zhao, H., Gao, H., Li, B., Song, Z., Hu, T., Liu, F. Mater. Lett. 2019, 252, 215. https://doi.org/10.1016/j.matlet.2019.05.059.Suche in Google Scholar

23. Huang, L., Santiago, D., Loyselle, P., Dai, L. Small 2018, 14, 1800879. https://doi.org/10.1002/smll.201800879.Suche in Google Scholar PubMed

24. US EPA. Drinking Water Regulations | US EPA, 2001. https://www.epa.gov/dwreginfo/drinking-water-regulations (accessed Jul 14, 2022).Suche in Google Scholar

25. Cotruvo, J. A. J. Am. Water Works Assn 2017, 109, 44. https://doi.org/10.5942/jawwa.2017.109.0087.Suche in Google Scholar

26. Gumpu, M. B., Sethuraman, S., Krishnan, U. M., Rayappan, J. B. B. Sens. Actuators, B 2015, 213, 515. https://doi.org/10.1016/j.snb.2015.02.122.Suche in Google Scholar

27. Bansod, B. K., Kumar, T., Thakur, R., Rana, S., Singh, I. Biosens. Bioelectron. 2017, 94, 443. https://doi.org/10.1016/j.bios.2017.03.031.Suche in Google Scholar PubMed

28. Afkhami, A., Soltani-Felehgari, F., Madrakian, T., Ghaedi, H., Rezaeivala, M. Anal. Chim. Acta 2013, 771, 21. https://doi.org/10.1016/j.aca.2013.02.031.Suche in Google Scholar PubMed

29. Zhang, L., Peng, D., Liang, R. P., Qiu, J. D. TrAC, Trends Anal. Chem. 2018, 102, 280. https://doi.org/10.1016/j.trac.2018.02.010.Suche in Google Scholar

30. Sadeghi, M. H., Tofighy, M. A., Mohammadi, T. Chemosphere 2020, 253, 126647. https://doi.org/10.1016/j.chemosphere.2020.126647.Suche in Google Scholar PubMed

31. Kong, Q., Shi, X., Ma, W., Zhang, F., Yu, T., Zhao, F., Zhao, D., Wei, C. J. Hazard Mater. 2021, 415, 125690. https://doi.org/10.1016/j.jhazmat.2021.125690.Suche in Google Scholar PubMed

32. Ahmad, H., Liu, C. J. Hazard Mater. 2021, 415, 125661. https://doi.org/10.1016/j.jhazmat.2021.125661.Suche in Google Scholar PubMed

33. Wang, X., Xu, Y., Li, Y., Li, Y., Li, Z., Zhang, W., Zou, X., Shi, J., Huang, X., Liu, C., Li, W. Food Chem. 2021, 357, 129762. https://doi.org/10.1016/j.foodchem.2021.129762.Suche in Google Scholar PubMed

34. Gupta, P., Rahm, C. E., Jiang, D., Gupta, V. K., Heineman, W. R., Justin, G., Alvarez, N. T. Anal. Chim. Acta 2021, 1155, 338353. https://doi.org/10.1016/j.aca.2021.338353.Suche in Google Scholar PubMed

35. Ngoc Bui, M. P., Li, C. A., Han, K. N., Pham, X. H., Seong, G. H. Analyst 2012, 137, 1888. https://doi.org/10.1039/C2AN16020J.Suche in Google Scholar

36. Zhang, B., Chen, J., Zhu, H., Yang, T., Zou, M., Zhang, M., Du, M. Electrochim. Acta 2016, 196, 422. https://doi.org/10.1016/j.electacta.2016.02.163.Suche in Google Scholar

37. Wei, Y., Gao, C., Meng, F-L., Li, H-H., Wang, L., Liu, J-H., Huang, X-J. J. Phys. Chem. C 2012, 116, 1034. https://doi.org/10.1021/jp209805c.Suche in Google Scholar

38. Kumar, R., Barakat, M. A., Taleb, M. A., Seliem, M. K. J. Clean. Prod. 2020, 268, 122290. https://doi.org/10.1016/j.jclepro.2020.122290.Suche in Google Scholar

39. Dai, H., Wang, N., Wang, D., Ma, H., Lin, M. Chem. Eng. J. 2016, 299, 150. https://doi.org/10.1016/j.cej.2016.04.083.Suche in Google Scholar

40. Diarisso, A., Fall, M., Raouafi, N. Environ. Sci. Water Res. Technol. 2018, 4, 1024. https://doi.org/10.1039/C8EW00139A.Suche in Google Scholar

41. Akhtar, M., Tahir, A., Zulfiqar, S., Hanif, F., Warsi, M. F., Agboola, P. O., Shakir, I. Synth. Met. 2020, 265, 116410. https://doi.org/10.1016/j.synthmet.2020.116410.Suche in Google Scholar

42. Javaid, A., Khalid, O., Shakeel, A., Noreen, S. J. Energy Storage 2021, 33, 102168. https://doi.org/10.1016/j.est.2020.102168.Suche in Google Scholar

43. Sun, Y., Jiao, L., Han, D., Wang, F., Zhang, P., Li, H., Niu, L. Mater. Des. 2020, 188, 108440. https://doi.org/10.1016/j.matdes.2019.108440.Suche in Google Scholar

44. Lo, M., Diaw, A. K. D., Gningue-Sall, D., Oturan, M. A., Chehimi, M. M., Aaron, J. J. Luminescence 2019, 34, 489. https://doi.org/10.1002/bio.3626.Suche in Google Scholar PubMed

45. Zhu, G., Ge, Y., Dai, Y., Shang, X., Yang, J., Liu, J. Electrochim. Acta 2018, 268, 202. https://doi.org/10.1016/j.electacta.2018.02.101.Suche in Google Scholar

46. Oularbi, L., Turmine, M., El Rhazi, M. J. Solid State Electrochem. 2017, 21, 3289. https://doi.org/10.1007/s10008-017-3676-2.Suche in Google Scholar

47. Jaiswal, N., Tiwari, I., Foster, C. W., Banks, C. E. Electrochim. Acta 2017, 227, 255. https://doi.org/10.1016/j.electacta.2017.01.007.Suche in Google Scholar

48. Wang, Q-H., Yu, L-J., Liu, Y., Lin, L., Lu, R., Zhu, J-P., He, L., Lu, Z-L. Talanta 2017, 165, 709. https://doi.org/10.1016/j.talanta.2016.12.044.Suche in Google Scholar PubMed

49. Cesana, R., Ferreira, J. H. A., Gonçalves, J. M., Gomes, D., Nakamura, M., Peres, R. M., Toma, H. E., Canevari, T. C. Mater. Sci. Eng., B 2021, 267, 115084. https://doi.org/10.1016/j.mseb.2021.115084.Suche in Google Scholar

50. Deshmukh, M. A., Shirsat, M. D., Ramanaviciene, A., Ramanavicius, A. Crit. Rev. Anal. Chem. 2018, 48, 293. https://doi.org/10.1080/10408347.2017.1422966.Suche in Google Scholar PubMed

51. Deshmukh, M. A., Celiesiute, R., Ramanaviciene, A., Shirsat, M. D., Ramanavicius, A. Electrochim. Acta 2018, 259, 930. https://doi.org/10.1016/j.electacta.2017.10.131.Suche in Google Scholar

52. Deshmukh, M. A., Patil, H. K., Bodkhe, G. A., Yasuzawa, M., Koinkar, P., Ramanavicius, A., Pandey, S., Shirsat, M. D. Colloids Surf., A 2018, 537, 303. https://doi.org/10.1016/j.colsurfa.2017.10.026.Suche in Google Scholar

53. Deshmukh, M. A., Patil, H. K., Bodkhe, G. A., Yasuzawa, M., Koinkar, P., Ramanaviciene, A., Shirsat, M. D., Ramanavicius, A. Sens. Actuators, B 2018, 260, 331. https://doi.org/10.1016/j.snb.2017.12.160.Suche in Google Scholar

54. Deshmukh, M. A., Bodkhe, G. A., Shirsat, S., Ramanavicius, A., Shirsat, M. D. Front. Chem. 2018, 6, 451. https://doi.org/10.3389/fchem.2018.00451.Suche in Google Scholar PubMed PubMed Central

55. Ricci, A., Olejar, K. J., Parpinello, G. P., Kilmartin, P. A. A. Versari 2015, 50, 407. https://doi.org/10.1080/05704928.2014.1000461.Suche in Google Scholar

56. Mallakpour, S., Azimi, F. In: Thomas, S., Daniel, S., Eds. 2020, pp 231.10.1016/B978-0-08-101903-0.00006-4Suche in Google Scholar

57. Bokobza, L. Polymers 2017, 10, 7. https://doi.org/10.3390/polym10010007.Suche in Google Scholar PubMed PubMed Central

58. Aziz, M., Ismail, A. F. Membr. Charact. 2017, 81. https://doi.org/10.1016/B978-0-444-63776-5.00005-X.Suche in Google Scholar

59. Li, S., Chen, Y., He, X., Mao, X., Zhou, Y., Xu, J., Yang, Y. Nanoscale Res. Lett. 2019, 14, 1. https://doi.org/10.1186/s11671-019-3051-6.Suche in Google Scholar PubMed PubMed Central

60. Chinnathambi, A., Alahmadi, T. A. Chemosphere 2021, 272, 129851. https://doi.org/10.1016/j.chemosphere.2021.129851.Suche in Google Scholar PubMed

61. Eltayeb, N. E., Khan, A. J. Mater. Res. Technol. 2020, 9, 10459. https://doi.org/10.1016/j.jmrt.2020.07.031.Suche in Google Scholar

62. Mohammed, A., Abdullah, A. Proceedings of the 2018 International Conference on Hydraulics and Pneumatics—HERVEX; Băile Govora: Romania, 2018; pp 78. https://fluidas.ro/hervex/proceedings2018/77-85.pdf.Suche in Google Scholar

63. Abd Mutalib, M., Rahman, M. A., Othman, M. H. D., Ismail, A. F., Jaafar, J. Membr. Charact. 2017, 161. https://doi.org/10.1016/B978-0-444-63776-5.00009-7.Suche in Google Scholar

64. Tang, C. Y., Yang, Z. Membr. Charact. 2017, 145. https://doi.org/10.1016/B978-0-444-63776-5.00008-5.Suche in Google Scholar

65. Johnson, D., Oatley-Radcliffe, D. L., Hilal, N. Membr. Charact. 2017, 115. https://doi.org/10.1016/B978-0-444-63776-5.00007-3.Suche in Google Scholar

66. Pleshakova, T. O., Bukharina, N. S., Archakov, A. I., Ivanov, Y. D. Int. J. Mol. Sci. 2018, 19, 1142. https://doi.org/10.3390/ijms19041142.Suche in Google Scholar PubMed PubMed Central

67. Palash, M. L., Mitra, S., Harish, S., Thu, K., Saha, B. B. Int. J. Refrig. 2019, 105, 72. https://doi.org/10.1016/j.ijrefrig.2018.08.017.Suche in Google Scholar

68. Barakzehi, M., Montazer, M., Sharif, F., Norby, T., Chatzitakis, A. Electrochim. Acta 2019, 305, 187. https://doi.org/10.1016/j.electacta.2019.03.058.Suche in Google Scholar

69. Bora, C., Dolui, S. K. Polymer 2012, 53, 923. https://doi.org/10.1016/j.polymer.2011.12.054.Suche in Google Scholar

70. Shi, X., Yu, Y., Yang, Q., Hong, X. Appl. Surf. Sci. 2020, 524, 146397. https://doi.org/10.1016/j.apsusc.2020.146397.Suche in Google Scholar

71. Dudkiewicz, A., Lehner, A., Chaudhry, Q., Molhave, K., Allmaier, G., Tiede, K., Boxall, A. B. A., Hofmann, P., Lewis, J. Particuology 2019, 45, 49. https://doi.org/10.1016/j.partic.2018.05.007 https://doi.org/10.1016/j.partic.2018.05.007.10.1016/j.partic.2018.05.007Suche in Google Scholar

72. Cai, Z., Xiong, H., Zhu, Z., Huang, H., Li, L., Huang, Y., Yu, X. Synth. Met. 2017, 227, 100. https://doi.org/10.1016/j.synthmet.2017.03.012.Suche in Google Scholar

73. Wei, D., Lin, X., Li, L., Shang, S., Yuen, M. C-W., Yan, G., Yu, X. Soft Matter 2013, 9, 2832. https://doi.org/10.1039/C2SM27253A.Suche in Google Scholar

74. Stylianou, A., Lekka, M., Stylianopoulos, T. Nanoscale 2018, 10, 20930. https://doi.org/10.1039/C8NR06146G.Suche in Google Scholar

75. Braet, F., Taatjes, D. J., Wisse, E. Semin. Cell Dev. Biol. 2018, 73, 13–30. https://doi.org/10.1016/j.semcdb.2017.07.001.Suche in Google Scholar PubMed

76. Chlanda, A., Walejewska, E., Kowiorski, K., Heljak, M., Swieszkowski, W., Lipińska, L. Micron 2021, 146, 103072. https://doi.org/10.1016/j.micron.2021.103072.Suche in Google Scholar PubMed

77. Bulbul, Y. E., Uzunoglu, T., Dilsiz, N., Yildirim, E., Ates, H. Polym. Test. 2020, 92, 106877. https://doi.org/10.1016/j.polymertesting.2020.106877.Suche in Google Scholar

78. Boguzaite, R., Ratautaite, V., Mikoliunaite, L., Pudzaitis, V., Ramanaviciene, A., Ramanavicius, A. J. Electroanal. Chem. 2021, 886, 115132. https://doi.org/10.1016/j.jelechem.2021.115132.Suche in Google Scholar

79. Deshmukh, M. A., Gicevicius, M., Ramanaviciene, A., Shirsat, M. D., Viter, R., Ramanavicius, A. Sens. Actuators, B 2017, 248, 527. https://doi.org/10.1016/j.snb.2017.03.167.Suche in Google Scholar

80. Fall, B., Diaw, A. K. D., Fall, M., Sall, M. L., Lo, M., Gningue-Sall, D., Thotiyl, M. O., Maria, H. J., Kalarikkal, N., Thomas, S. Mater. Today Commun. 2021, 26, 102005. https://doi.org/10.1016/J.MTCOMM.2020.102005.Suche in Google Scholar

81. Lo, M., Seydou, M., Bensghaïer, A., Pires, R., Gningue-Sall, D., Aaron, J-J., Mekhalif, Z., Delhalle, J., Chehimi, M. M. Sensors 2020, 20, 580. https://doi.org/10.3390/S20030580.Suche in Google Scholar PubMed PubMed Central

82. Seck, S. M., Charvet, S., Fall, M., Baudrin, E., Geneste, F., Lejeune, M., Benlahsen, M. J. Electroanal. Chem. 2015, 738, 154. https://doi.org/10.1016/j.jelechem.2014.11.013.Suche in Google Scholar

83. Lo, M., Diaw, A. K. D., Gningue-Sall, D., Aaron, J. J., Oturan, M. A., Chehimi, M. M. Electrochem. Commun. 2017, 77, 14. https://doi.org/10.1016/j.elecom.2017.02.002.Suche in Google Scholar

84. Kim, T., Ramadoss, A., Saravanakumar, B., Veerasubramani, G. K., Kim, S. J. Appl. Surf. Sci. 2016, 370, 452. https://doi.org/10.1016/j.apsusc.2016.02.147.Suche in Google Scholar

85. Thakurathi, M., Gurung, E., Cetin, M. M., Thalangamaarachchige, V. D., Mayer, M. F., Korzeniewski, C., Quitevis, E. L. Electrochim. Acta 2018, 259, 245. https://doi.org/10.1016/j.electacta.2017.10.149.Suche in Google Scholar

86. Mohammadi, I., Afshar, A., Ahmadi, S. Ceram. Int. 2016, 42, 12105. https://doi.org/10.1016/j.ceramint.2016.04.142.Suche in Google Scholar

87. Larfaillou, S., Guy-Bouyssou, D., Le Cras, F., Franger, S. J. Power Sources 2016, 319, 139. https://doi.org/10.1016/j.jpowsour.2016.04.057.Suche in Google Scholar

88. García-González, R., Fernández Abedul, M. T. Lab. Methods Dyn. Electroanal 2020, 119. https://doi.org/10.1016/B978-0-12-815932-3.00012-7.Suche in Google Scholar

89. Cruz-Manzo, S., Greenwood, P., Chen, R. J. Electrochem. Soc. 2017, 164, A1446. https://doi.org/10.1149/2.0431707jes.Suche in Google Scholar

90. Adán-Más, A., Silva, T. M., Guerlou-Demourgues, L., Montemor, M. F. Electrochim. Acta 2018, 289, 47. https://doi.org/10.1016/j.electacta.2018.08.077.Suche in Google Scholar

91. Brett, C. M. A. Molecules 2022, 27, 1497. https://doi.org/10.3390/molecules27051497.Suche in Google Scholar PubMed PubMed Central

92. Usman, F., Dennis, J. O., Seong, K. C., Ahmed, A. Y., Meriaudeau, F., Ayodele, O. B., Tobi, A. R., Rabih, A. A. S., Yar, A. Results Phys. 2019, 15, 102690. https://doi.org/10.1016/j.rinp.2019.102690.Suche in Google Scholar

93. Foo, C. Y., Huang, N. M., Lim, H. N., Jiang, Z. T., Altarawneh, M. Eur. Polym. J. 2019, 117, 227. https://doi.org/10.1016/j.eurpolymj.2019.05.021.Suche in Google Scholar

94. Hou, Z., Zou, S., Li, J. J. Alloys Compd. 2020, 827, 154390. https://doi.org/10.1016/j.jallcom.2020.154390.Suche in Google Scholar

95. Bhardwaj, P., Grace, A. N. Diam. Relat. Mater. 2020, 106, 107871. https://doi.org/10.1016/j.diamond.2020.107871.Suche in Google Scholar

96. Kafle, B. P. Chem. Anal. Mater. Charact. by Spectrophotometry. Elsevier, 2020, 147. https://doi.org/10.1016/B978-0-12-814866-2.00006-3.Suche in Google Scholar

97. Jorge, F. E., Pimenta, L. T. G., Marques, M. de F. V. Mater. Sci. Eng., B 2021, 263, 114851.10.1016/j.mseb.2020.114851Suche in Google Scholar

98. Kumar, P., Bora, C., Kumar, B., Sukul, P. K., Das, S. Synth. Met. 2020, 264, 116381. https://doi.org/10.1016/j.synthmet.2020.116381.Suche in Google Scholar

99. Moyseowicz, A., Gryglewicz, G. Compos. B Eng. 2019, 159, 4. https://doi.org/10.1016/j.compositesb.2018.09.069.Suche in Google Scholar

100. He, X., Liu, Q., Liu, J., Li, R., Zhang, H., Chen, R., Wang, J. Chem. Eng. J. 2017, 325, 134. https://doi.org/10.1016/j.cej.2017.05.043.Suche in Google Scholar

101. Abuali, M., Arsalani, N., Ahadzadeh, I. J. Energy Storage 2020, 32, 101694. https://doi.org/10.1016/j.est.2020.101694.Suche in Google Scholar

102. Linzhi, L. I., Shujuan, G. A. O. Mater. Today Commun. 2020, 24, 100993. https://doi.org/10.1016/j.mtcomm.2020.100993.Suche in Google Scholar

103. Chen, J., Wang, Y., Cao, J., Liao, L., Liu, Y., Zhou, Y., Ouyang, J-H., Jia, D., Wang, M., Li, X., Li, Z. Electrochim. Acta 2020, 361, 137036. https://doi.org/10.1016/j.electacta.2020.137036.Suche in Google Scholar

104. Ghanbari, K., Moloudi, M. Anal. Biochem. 2016, 512, 91. https://doi.org/10.1016/j.ab.2016.08.014.Suche in Google Scholar PubMed

105. Promphet, N., Rattanarat, P., Rangkupan, R., Chailapakul, O., Rodthongkum, N. Sens. Actuators, B 2015, 207, 526. https://doi.org/10.1016/j.snb.2014.10.126.Suche in Google Scholar

106. Seenivasan, R., Chang, W. J., Gunasekaran, S. ACS Appl. Mater. Interfaces 2015, 7, 15935. https://doi.org/10.1021/acsami.5b03904.Suche in Google Scholar PubMed

107. Rong, R., Zhao, H., Gan, X., Chen, S., Quan, X. Nano 2017, 12, 1750008. https://doi.org/10.1142/S1793292017500084.Suche in Google Scholar

108. Rehman, A. U., Ikram, M., Kan, K., Zhao, Y., Zhang, W. J., Zhang, J., Liu, Y., Wang, Y., Du, L., Shi, K. Sens. Actuators, B 2018, 274, 285. https://doi.org/10.1016/j.snb.2018.08.004.Suche in Google Scholar

109. Ruecha, N., Rodthongkum, N., Cate, D. M., Volckens, J., Chailapakul, O., Henry, C. S. Anal. Chim. Acta 2015, 874, 40. https://doi.org/10.1016/j.aca.2015.02.064.Suche in Google Scholar PubMed

110. Muralikrishna, S., Nagaraju, D. H., Balakrishna, R. G., Surareungchai, W., Ramakrishnappa, T., Shivanandareddy, A. B. Anal. Chim. Acta 2017, 990, 67. https://doi.org/10.1016/j.aca.2017.09.008.Suche in Google Scholar PubMed

111. Chong, W. S., Gan, S. X., Al-Tuwirit, H. M., Chong, W. Y., Lim, C. S., Ahmad, H. Mater. Chem. Phys. 2020, 249, 122970. https://doi.org/10.1016/j.matchemphys.2020.122970.Suche in Google Scholar

112. Kaliyaraj Selva Kumar, A., Zhang, Y., Li, D., Compton, R. G. Electrochem. Commun. 2020, 121, 106867. https://doi.org/10.1016/j.elecom.2020.106867.Suche in Google Scholar

113. Baig, N., Sajid, M., Saleh, T. A. TrAC, Trends Anal. Chem. 2019, 111, 47. https://doi.org/10.1016/j.trac.2018.11.044.Suche in Google Scholar

114. Gong, Q., Han, H., Yang, H., Zhang, M., Sun, X., Liang, Y., Liu, Z., Zhang, W., Qiao, J. J. Materiomics. 2019, 5, 313. https://doi.org/10.1016/j.jmat.2019.03.004.Suche in Google Scholar

115. Aydın, E. B., Aydın, M., Sezgintürk, M. K. Biosens. Bioelectron. 2018, 121, 80. https://doi.org/10.1016/j.bios.2018.09.008.Suche in Google Scholar PubMed

116. Lv, M., Wang, X., Li, J., Yang, X., Zhang, C., Yang, J., Hu, H. Electrochim. Acta 2013, 108, 412. https://doi.org/10.1016/j.electacta.2013.06.099.Suche in Google Scholar

117. Alves, G. M. S., Rocha, L. S., Soares, H. M. V. M. Talanta 2017, 175, 53. https://doi.org/10.1016/j.talanta.2017.06.077.Suche in Google Scholar PubMed

118. Govindhan, M., Adhikari, B. R., Chen, A. RSC Adv. 2014, 4, 63741. https://doi.org/10.1039/C4RA10399H.Suche in Google Scholar

119. Zhang, W., Xu, Y., Tahir, H. E., Zou, X. Chem. Eng. J. 2017, 309, 305. https://doi.org/10.1016/j.cej.2016.10.081.Suche in Google Scholar

120. Lu, Y., Liang, X., Xu, J., Zhao, Z., Tian, G. Sens. Actuators, B 2018, 273, 1146. https://doi.org/10.1016/j.snb.2018.06.104.Suche in Google Scholar

121. Mouhamed, N., Cheikhou, K., Rokhy, G. E. M., Bagha, D. M., Guèye, M. D. C., Tzedakis, T. Am. J. Anal. Chem. 2018, 9, 171. https://doi.org/10.4236/ajac.2018.93015.Suche in Google Scholar

122. Wang, X., Qi, Y., Shen, Y., Yuan, Y., Zhang, L., Zhang, C., Sun, Y. Sens. Actuators, B 2020, 310, 127756. https://doi.org/10.1016/j.snb.2020.127756.Suche in Google Scholar

123. Ye, W., Li, Y., Wang, J., Li, B., Cui, Y., Yang, Y., Qian, G. J. Solid State Chem. 2020, 281, 121032. https://doi.org/10.1016/j.jssc.2019.121032.Suche in Google Scholar

124. Sall, M. L., Fall, B., Diédhiou, I., Dièye, E., Lo, M., Diaw, A. K. D., Gningue-Sall, D., Raouafi, N., Fall, M. Chem. Africa 2020, 33, 499. https://doi.org/10.1007/s42250-020-00157-0.Suche in Google Scholar

125. Salih, F. E., Ouarzane, A., El Rhazi, M. Arab. J. Chem. 2017, 10, 596. https://doi.org/10.1016/j.arabjc.2015.08.021.Suche in Google Scholar

126. Nurhayati, E., Juang, Y., Rajkumar, M., Huang, C., Hu, C-C. Separ. Purif. Technol. 2015, 156, 1047. https://doi.org/10.1016/j.seppur.2015.07.022.Suche in Google Scholar

127. Romih, T., Hočevar, S. B., Kononenko, V., Drobne, D. Sens. Actuators, B 2017, 238, 1277. https://doi.org/10.1016/j.snb.2016.09.090.Suche in Google Scholar

128. Suvina, V., Krishna, S. M., Nagaraju, D. H., Melo, J. S., Balakrishna, R. G. Mater. Lett. 2018, 232, 209. https://doi.org/10.1016/j.matlet.2018.08.096.Suche in Google Scholar

129. Arulraj, A. D., Devasenathipathy, R., Chen, S. M., Vasantha, V. S., Wang, S. F. J. Colloid Interface Sci. 2016, 483, 268. https://doi.org/10.1016/j.jcis.2016.08.026.Suche in Google Scholar PubMed

130. Hanif, F., Tahir, A., Akhtar, M., Waseem, M., Haider, S., Aboud, M. F. A., Shakir, I., Imran, M., Warsi, M. F. Synth. Met. 2019, 257, 116185. https://doi.org/10.1016/j.synthmet.2019.116185.Suche in Google Scholar

131. Palanisamy, S., Thangavelu, K., Chen, S-M., Velusamy, V., Chang, M-H., Chen, T-W., Al-Hemaid, F. M. A., Ali, M. A., Ramaraj, S. K. Sens. Actuators, B 2017, 243, 888. https://doi.org/10.1016/j.snb.2016.12.068.Suche in Google Scholar

132. Toghan, A., Abd-Elsabour, M., Abo-Bakr, A. M. Sens. Actuators, A A. 2021, 322, 112603. https://doi.org/10.1016/j.sna.2021.112603.Suche in Google Scholar

133. Dedelaite, L., Kizilkaya, S., Incebay, H., Ciftci, H., Ersoz, M., Yazicigil, Z., Oztekin, Y., Ramanaviciene, A., Ramanavicius, A. Colloids Surf., A 2015, 483, 279. https://doi.org/10.1016/j.colsurfa.2015.05.054.Suche in Google Scholar

134. Oztekin, Y., Yazicigil, Z., Solak, A. O., Ustundag, Z., Okumus, A., Kilic, Z., Ramanaviciene, A., Ramanavicius, A. Sens. Actuators, B 2012, 166–167, 117. https://doi.org/10.1016/j.snb.2012.01.025.Suche in Google Scholar

Received: 2021-10-07
Accepted: 2022-09-20
Published Online: 2023-01-25
Published in Print: 2023-02-23

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 16.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2021-8596/pdf
Button zum nach oben scrollen