Startseite Mechanical characterization and evaluation of pitting corrosion resistance of a superferritic stainless steel model alloy 25Cr–6Mo–5Ni
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Mechanical characterization and evaluation of pitting corrosion resistance of a superferritic stainless steel model alloy 25Cr–6Mo–5Ni

  • Francisco Evaristo Uchôa Reis , Luis Paulo Mourão dos Santos , Lorena Braga Moura , Mirela Oliveira de Castro , Pedro de Lima Neto , Jorge Luiz Cardoso ORCID logo EMAIL logo und Hamilton Ferreira Gomes de Abreu
Veröffentlicht/Copyright: 28. Juni 2023
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The mechanical properties and corrosion resistance of annealed superferritic stainless steel model alloy 25Cr–6Mo–5Ni were investigated in 0.6 M NaCl solution. The microstructure consisted of a ferrite matrix and eutectoid phase with a lamellar structure distributed at grain boundaries and within the ferrite grains with a spherical morphology. Tensile and impact results suggested brittle behavior of the model alloy. Fractography analysis revealed typical cleavage facets, river patterns and micro-cracks at grain boundaries and across the ferrite grains. Pitting corrosion began within the eutectoid phase, which contains in chrome depletion zones. Electrochemical impedance spectroscopy measurements suggest that the breakdown of passive films was more susceptible in the eutectoid phase.


Corresponding author: Jorge Luiz Cardoso, Department of Metallurgical and Materials Engineering, Federal University of Ceará, Humberto Monte Av. s/n – Pici, Fortaleza, CE, 60440-593, Brazil, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The authors would like to thank the Brazilian agencies CNPq, CAPES and FUNCAP for financial support and to the FAI (Fundição de Aço Inox Ltda) company from Brazil for providing the SFSS model alloy 25Cr-6Mo-5Ni used in this research. Luis P. M. Santos thanks the CAPES scholarship (88882.463158/2019-01) PNPD/CAPES.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Tverberg, J., Blessman, E. Condenser Technology, Seminar and Conference, 2002.Suche in Google Scholar

2. Ng, P. G., Clarke, E., Khoo, C. A., Fourlaris, G. Mater. Sci. Technol. 2006, 22, 852–858. https://doi.org/10.1179/174328406X91140.Suche in Google Scholar

3. Olubambi, P. A., Potgieter, J. H., Cornish, L. Mater. Des. 2009, 30, 1451–1457. https://doi.org/10.1016/j.matdes.2008.08.019.Suche in Google Scholar

4. Villanueva, D. M. E., Junior, F. C. P., Plaut, R. L., Padilha, A. F. Mater. Sci. Technol. 2006, 22, 1098–1104. https://doi.org/10.1179/174328406X109230.Suche in Google Scholar

5. Guo, T. M., Zhang, D. C., Han, C. S., Hui, Z., Zhao, L. M. Adv. Mater. Res. 2012, 476, 263–268. https://doi.org/10.4028/www.scientific.net/AMR.476-478.263.Suche in Google Scholar

6. Guo, T. M., Zhang, D. C., Hui, Z., Han, C. S., Zhao, L. M. Adv. Mater. 2012, 415, 800–806. https://doi.org/10.4028/www.scientific.net/AMR.415-417.800.Suche in Google Scholar

7. Selecka, M., Salak, A., Danninger, H. J. Mater. Process. Technol. 2003, 143, 910–915. https://doi.org/10.1016/j.jmatprotec.2003.10.001.Suche in Google Scholar

8. Shulga, A. V. Eng. Fail. Anal. 2015, 56, 512–519. https://doi.org/10.1016/j.engfailanal.2014.11.019.Suche in Google Scholar

9. Carboga, C., Aktas, B., Kurt, B. J. Mater. Eng. Perform. 2020, 29, 3120–3126. https://doi.org/10.1007/s11665-020-04796-9.Suche in Google Scholar

10. Vasconcelos, I. F., Tavares, S. S., Reis, F. E. U., Abreu, H. F. J. Mater. Sci. 2009, 44, 293–299. https://doi.org/10.1007/s10853-008-3064-5.Suche in Google Scholar

11. Moura, L. B., Guimarães, R. F., Abreu, H. F. G. d., Miranda, H. C. d., Tavares, S. S. M. Mater. Res. 2012, 15, 277–284. https://doi.org/10.1590/S1516-14392012005000024.Suche in Google Scholar

12. Moura, L. B., de Abreu, H. F. G., Negreiros, Y. S. J. Mater. Res. Technol. 2013, 2, 282–287. https://doi.org/10.1016/j.jmrt.2013.02.013.Suche in Google Scholar

13. ASTM. Standard Test Method for Electrochemical Critical Pitting Temperature Testing of Stainless Steels; ASTM International, 2013.Suche in Google Scholar

14. A. E92-82 Standard Test Method for Vickers Hardness of Metallic Materials, 1982.Suche in Google Scholar

15. Beres, L. Weld. J. 1998, 77, 273–276.Suche in Google Scholar

16. Karlsson, L., Norden, H., Odelius, H. Acta Metall. 1988, 36, 1–12. https://doi.org/10.1016/0001-6160(88)90023-5.Suche in Google Scholar

17. Andrade, T. F., Kliauga, A. M., Plaut, R. L., Padilha, A. F. Mater. Charact. 2008, 59, 503–507. https://doi.org/10.1016/j.matchar.2007.03.006.Suche in Google Scholar

18. Molinari, A., Pieczonka, T., Kazior, J., Gialanella, S., Straffelini, G. Metall. Mater. Trans. A 2000, 31, 1497–1506. https://doi.org/10.1007/s11661-000-0160-9.Suche in Google Scholar

19. Dos Santos, J. R., Herculano, L. F. G., Cardoso, J. L., da Silva, M. J. G. Int. J. Mech. Res. 2022, 113, 327–335. https://doi.org/10.1515/ijmr-2021-8465.Suche in Google Scholar

20. Song, G. Corros. Sci. 2005, 47, 1953–1987. https://doi.org/10.1016/j.corsci.2004.09.007.Suche in Google Scholar

21. Magnabosco, R., Alonso-Falleiros, N. Corrosion 2005, 61, 130–136. https://doi.org/10.5006/1.3278167.Suche in Google Scholar

22. Alonso-Falleiros, N., Hakim, A., Wolynec, S. Corrosion 1999, 55, 443–448. https://doi.org/10.5006/1.3284005.Suche in Google Scholar

23. Li, R., Ferreira, M. G. S., Anjos, M., Vilar, R. Surf. Coat. Technol. 1997, 88, 96–102. https://doi.org/10.1016/S0257-8972(96)02895-2.Suche in Google Scholar

24. Pardo, A., Merino, M., Carboneras, M., Coy, A., Arrabal, R. Corros. Sci. 2007, 49, 510–525. https://doi.org/10.1016/j.corsci.2006.06.004.Suche in Google Scholar

25. do Nascimento, A. M., Ierardi, M. C. F., Kina, A. Y., Tavares, S. S. M. Mater. Charact. 2008, 59, 1736–1740. https://doi.org/10.1016/j.matchar.2008.03.015.Suche in Google Scholar

26. Kim, J. K., Kim, Y. H., Lee, B. H., Kim, K. Y. Electrochim. Acta 2011, 56, 1701–1710. https://doi.org/10.1016/j.electacta.2010.08.042.Suche in Google Scholar

27. Da Silva, P. S. G., Costa, A. N. C., Mattos, O. R., Correia, A. N., De Lima-Neto, P. J. Appl. Electrochem. 2006, 36, 375–383. https://doi.org/10.1007/s10800-005-9083-x.Suche in Google Scholar

28. Nana, S., Cortie, M. B. Metall. Mater. Trans. A 1996, 27, 2436–2444. https://doi.org/10.1007/bf02652337.Suche in Google Scholar

29. Koutsoukis, T., Konstantinidis, K., Papadopoulou, E. G., Kokkonidis, P., Fourlaris, G. Mater. Sci. Technol. 2011, 27, 943–950. https://doi.org/10.1179/026708310X12712410311938.Suche in Google Scholar

30. Moura, L. B., Guimaraes, R. F., de Abreu, H. F. G., de Miranda, H. C., Tavares, S. S. M. Mater. Res-Ibero-Am. J. 2012, 15, 277–284. https://doi.org/10.1590/S1516-14392012005000024.Suche in Google Scholar

31. Zhang, X., Fan, L., Xu, Y., Li, J., Xiao, X., Jiang, L. Mater. Des. 2015, 65, 682–689. https://doi.org/10.1016/j.matdes.2014.09.074.Suche in Google Scholar

32. A. A240 Standard Specification for Chromium and Chromium-Nickel Stainless Steel Plate, Sheet, and Strip for Pressure Vessels and for General Applications, 2004.Suche in Google Scholar

Received: 2021-07-01
Accepted: 2023-02-27
Published Online: 2023-06-28
Published in Print: 2023-12-27

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 16.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ijmr-2021-8447/pdf
Button zum nach oben scrollen