Startseite Naturwissenschaften Optimization of the Spray-Drying Process for Developing Stingless Bee Honey Powder
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Optimization of the Spray-Drying Process for Developing Stingless Bee Honey Powder

  • Luis F. Cuevas-Glory , Jorge A. Pino EMAIL logo , Odri Sosa-Moguel , Enrique Sauri-Duch und Madai Bringas-Lantigua
Veröffentlicht/Copyright: 10. Dezember 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Response surface methodology was used to optimize the spray-drying process for the development of stingless bee honey powder. The independent variables were: inlet air temperature (110–150 oC) and maltodextrin 10DE content (50–70 % wb). The responses were powder yield, moisture, volatiles retention, solubility time, hygroscopicity, bulk loose, and hydroxymethylfurfural content. Powder moisture content, solubility time, hygroscopicity and loose bulk density were negatively affected by inlet air temperature, while powder yield, volatiles retention and hydroxymethylfurfural content were directly related. Powder yield, volatiles retention and solubility time increased with the rise in maltodextrin content, while moisture content, hygroscopicity, loose bulk density and hydroxymethylfurfural content were negatively affected by maltodextrin content. Multiple response optimization indicated that an inlet air temperature of 150 oC and maltodextrin content of 61 % wb were predicted to provide 40 % powder yield, 4.9 % wb moisture content, 71 % volatiles retention, 242 s solubility time and 232 mg/kg hydroxymethylfurfural content.

References

1. Vit P, Medina M, Enríquez E. Quality standards for medicinal uses of Meliponinae honey in Guatemala, Messico and Venezuela. Bee World 2004;85:2–5.10.1080/0005772X.2004.11099603Suche in Google Scholar

2. Crane E. The past and present status of beekeeping with stingless bees. Bee World 1992;73:29–42.10.1080/0005772X.1992.11099110Suche in Google Scholar

3. Souza B, Roubik D, Barth O, Heard T, Enríquez E, Carvalho C, et al. Composition of stingless bee honey: setting quality standards. Interciencia 2006;31:867–875.Suche in Google Scholar

4. Guerrini A, Bruni R, Maietti S, Poli F, Rossi D, Paganetto G, et al. Ecuadorian stingless bee (Meliponinae) honey: a chemical and functional profile of an ancient health product. Food Chem 2009;114:1413–1420.10.1016/j.foodchem.2008.11.023Suche in Google Scholar

5. Murugesan R, Orsat V. Spray drying for the production of nutraceutical ingredients – a review. Food Bioprocess Technol 2012;5:3–14.10.1007/s11947-011-0638-zSuche in Google Scholar

6. Roos YH, Karel M, Kokini JL. Glass transitions in low moisture and frozen foods: effect on shelf life and quality. Food Technol 1996;50:95–108.Suche in Google Scholar

7. Hebbar HU, Rastogi NK, Subramanian R. Properties of dried and intermediate moisture honey products: a review. Int J Food Prop 2008;11:804–819.10.1080/10942910701624736Suche in Google Scholar

8. Sahu JK. The Effect of additives on vacuum dried honey powder properties. Int J Food Eng 2008; 4: Article 9. DOI:10.2202/1556-3758.1356.Suche in Google Scholar

9. Nurhadi B, Andoyo R, Mahani I. Study the properties of honey powder produced from spray drying and vacuum drying method. Int Food Res J 2012;19(3):907–912.Suche in Google Scholar

10. Shi Q, Fang Z, Bhandari B. Effect of addition of whey protein isolate on spray-drying behavior of honey with maltodextrin as a carrier material. Drying Technol 2013;31:1681–1692.10.1080/07373937.2013.783593Suche in Google Scholar

11. Samborska K, Bieńkowska B. Physicochemical properties of spray dried honey preparations. Zeszyty Problemowe Postepόw Nauk Rolniczych 2013;575:91–105.Suche in Google Scholar

12. Samborska K, Czelejewska M. The influence of thermal treatment and spray drying on the physico-chemical properties of Polish honeys. J Food Process Preserv 2014;38:413–419.10.1111/j.1745-4549.2012.00789.xSuche in Google Scholar

13. Samborska K, Langa E, Kamińska-Dwórznicka A, Witrowa-Rajchert D. The influence of sodium caseinate on the physical properties of spray-dried honey. Int J Food Sci Technol 2015;50:256–262.10.1111/ijfs.12629Suche in Google Scholar

14. Samborska K, Gajek P, Kamińska-Dwórznicka A. Spray drying of honey: the effect of drying aids on powder properties. Polish J Food Nutr Sci 2015;65(2):109–118.10.2478/pjfns-2013-0012Suche in Google Scholar

15. Suhag Y, Nanda V. Evaluation of different carrier agents with respect to physico-chemical, functional and morphological characteristics of spray dried nutritionally rich honey powder. J Food Process Preserv 2016;40:1–9.10.1111/jfpp.12728Suche in Google Scholar

16. Bogdanov S. Harmonised methods of the European honey commission. Available at: www.ihc.-platform.net/ihcmethods2009.pdf, Accessed: 16 Dec 2015, 2009.Suche in Google Scholar

17. AOAC. Official methods of analysis, 18 . Gaithersburg, MD: Association of Official Analytical Chemists, 2006.Suche in Google Scholar

18. Goula AM, Adamopoulos KG. A new technique for spray drying orange juice concentrate. Innov Food Sci Emerg Technol 2010;11:342–351.10.1016/j.ifset.2009.12.001Suche in Google Scholar

19. Tonon VR, Brabet C, Hubinger M. Influence of process conditions on the physicochemical properties of açai powder produced by spray drying. J Food Eng 2008;88:411–418.10.1016/j.jfoodeng.2008.02.029Suche in Google Scholar

20. Ceballos L, Pino JA, Quijano-Célis CE, Dago A. Optimization of a HS-SPME/GC-MS method for determination of volatile compounds in some Cuban unifloral honeys. J Food Qual 2010;33:507–528.10.1111/j.1745-4557.2010.00330.xSuche in Google Scholar

21. Adams RP. Identification of essential oil components by gas chromatography/quadrupole mass spectroscopy. Carol Stream, IL: Allured Publishing Co, 2001.Suche in Google Scholar

22. Montgomery DC. Design and analysis of experiments. New York: John Wiley & Sons, 2013:478–523.Suche in Google Scholar

23. Fazaeli M, Emam-Djomeh Z, Ashtari AK, Omid M. Effect of spray drying conditions and feed composition on the physical properties of black mulberry juice powder. Food Bioprod Process 2012;90:667–675.10.1016/j.fbp.2012.04.006Suche in Google Scholar

24. Santhalakshmy S, Bosco SJD, Francis S, Sabeena M. Effect of inlet temperature on physicochemical properties of spray-dried jamun fruit juice powder. Powder Technol 2015;74:37–43.10.1016/j.powtec.2015.01.016Suche in Google Scholar

25. Quek SY, Chok NK, Swedlund P. The physicochemical properties of spray-dried watermelon powder. Chem Eng Process 2007;46(5):386–392.10.1016/j.cep.2006.06.020Suche in Google Scholar

26. Mishra P, Mishra S, Mahanta CH. Effect of maltodextrin concentration and inlet temperature during spray drying on physicochemical and antioxidant properties of amla (Emblica officinalis) juice powder. Food Bioprod Process 2014;92:252–258.10.1016/j.fbp.2013.08.003Suche in Google Scholar

27. Shrestha AK, Ua-Arak T, Adhikari BR, Howes T, Bhandari BR. Glass transition behavior of spray dried orange juice powder measures by differential scanning calorimetry (DSC) and thermal mechanical compression test (TMCT). Int J Food Prop 2007;10:661–673.10.1080/10942910601109218Suche in Google Scholar

28. Reineccius GA. Flavor chemistry and technology, 2 . Boca Raton, FL: CRC Press, 2006.Suche in Google Scholar

29. Komes D, Lovric T, Ganic KK. Aroma of dehydrated pear products. LWT Food Sci Technol 2007;40:1578–1586.10.1016/j.lwt.2006.12.011Suche in Google Scholar

30. Chin S-T, Nazimah SA, Quek S-Y, Mana YB, Rahman RA, Hashim DM. Effect of thermal processing and storage condition on the flavour stability of spray-dried durian powder. LWT Food Sci Technol 2010;43:856–861.10.1016/j.lwt.2010.01.001Suche in Google Scholar

31. Walton DE. The morphology of spray-dried particles, a qualitative view. Drying Technol 2000;18(9):1943–1986.10.1080/07373930008917822Suche in Google Scholar

32. Jittanit W, Niti-Att S, Techanuntachaikul O. Study of spray drying of pineapple juice using maltodextrin as an adjunct. Chiang Mai J Sci 2010;37(3):498–506.Suche in Google Scholar

33. Horuz E, Altan A, Maskan M. Spray drying and process optimization of unclarified pomegranate (Punica granatum) juice. Drying Technol 2012;30:787–798.10.1080/07373937.2012.663434Suche in Google Scholar

34. Kwapinska M, Zbicinski I. Prediction of final product properties after co-current spray drying. Drying Technol 2005;23:1653–1665.10.1081/DRT-200065075Suche in Google Scholar

35. Buffo RA, Probst K, Zehentbauer G, Luo Z, Reineccius GA. Effects of agglomeration on the properties of spray-dried encapsulated flavours. Flav Fragr J 2002;17:292–299.10.1002/ffj.1098Suche in Google Scholar

Published Online: 2016-12-10
Published in Print: 2017-1-1

©2017 by De Gruyter

Heruntergeladen am 3.1.2026 von https://www.degruyterbrill.com/document/doi/10.1515/ijfe-2016-0217/pdf
Button zum nach oben scrollen