Startseite Inner functions as multipliers and zero sets in weighted Dirichlet spaces
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Inner functions as multipliers and zero sets in weighted Dirichlet spaces

  • Liu Yang EMAIL logo
Veröffentlicht/Copyright: 30. Oktober 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this note, using some conditions on the weight function K, we investigate the inner functions as multipliers in weighted Dirichlet spaces, and we also discuss zero sets.

MSC 2010: 30D45; 30D50

Award Identifier / Grant number: 11471202

Funding statement: This work was supported by NSF of China (No. 11471202).

References

[1] A. Aleman, Hilbert spaces of analytic functions between the Hardy and the Dirichlet space, Proc. Amer. Math. Soc. 115 (1992), no. 1, 97–104. 10.1090/S0002-9939-1992-1079693-XSuche in Google Scholar

[2] G. Bao, Z. Lou, R. Qian and H. Wulan, On multipliers of Dirichlet type spaces, Complex Anal. Oper. Theory 9 (2015), no. 8, 1701–1732. 10.1007/s11785-015-0444-0Suche in Google Scholar

[3] B. Böe, A norm on the holomorphic Besov space, Proc. Amer. Math. Soc. 131 (2003), no. 1, 235–241. 10.1090/S0002-9939-02-06529-2Suche in Google Scholar

[4] L. Carleson, On a class of meromorphic functions and its associated exceptional sets, Thesis, University of Uppsala, 1950. Suche in Google Scholar

[5] L. Carleson, On the zeros of functions with bounded Dirichlet integrals, Math. Z. 56 (1952), 289–295. 10.1007/BF01174755Suche in Google Scholar

[6] J. G. Caughran, Two results concerning the zeros of functions with finite Dirichlet integral, Canad. J. Math. 21 (1969), 312–316. 10.4153/CJM-1969-033-5Suche in Google Scholar

[7] P. L. Duren, Theory of Hp Spaces, Pure Appl. Math. 38, Academic Press, New York, 1970. Suche in Google Scholar

[8] O. El-Fallah, K. Kellay, J. Mashreghi and T. Ransford, A Primer on the Dirichlet Space, Cambridge Tracts in Math. 203, Cambridge University Press, Cambridge, 2014. 10.1017/CBO9781107239425Suche in Google Scholar

[9] M. Essén, H. Wulan and J. Xiao, Several function-theoretic characterizations of Möbius invariant 𝒬K spaces, J. Funct. Anal. 230 (2006), no. 1, 78–115. 10.1016/j.jfa.2005.07.004Suche in Google Scholar

[10] J. B. Garnett, Bounded Analytic Functions, Pure Appl. Math. 96, Academic Press, New York, 1981. Suche in Google Scholar

[11] H. K. Hedenmalm, On the f- and K-properties of certain function spaces, Commutative Harmonic Analysis (Canton 1987), Contemp. Math. 91, American Mathematical Society, Providence (1989), 89–91. 10.1090/conm/091/1002590Suche in Google Scholar

[12] R. Kerman and E. Sawyer, Carleson measures and multipliers of Dirichlet-type spaces, Trans. Amer. Math. Soc. 309 (1988), no. 1, 87–98. 10.1090/S0002-9947-1988-0957062-1Suche in Google Scholar

[13] J. Pau and J. A. Peláez, On the zeros of functions in Dirichlet-type spaces, Trans. Amer. Math. Soc. 363 (2011), no. 4, 1981–2002. 10.1090/S0002-9947-2010-05108-6Suche in Google Scholar

[14] J. Pau and J. A. Peláez, Schatten classes of integration operators on Dirichlet spaces, J. Anal. Math. 120 (2013), 255–289. 10.1007/s11854-013-0020-3Suche in Google Scholar

[15] J. A. Peláez, Inner functions as improving multipliers, J. Funct. Anal. 255 (2008), no. 6, 1403–1418. 10.1016/j.jfa.2008.06.010Suche in Google Scholar

[16] R. Qian and Y. Shi, Inner function in Dirichlet type spaces, J. Math. Anal. Appl. 421 (2015), no. 2, 1844–1854. 10.1016/j.jmaa.2014.08.011Suche in Google Scholar

[17] M. Rabindranathan, Toeplitz operators and division by inner functions, Indiana Univ. Math. J. 22 (1972/73), 523–529. 10.1512/iumj.1973.22.22044Suche in Google Scholar

[18] R. Rochberg and Z. J. Wu, A new characterization of Dirichlet type spaces and applications, Illinois J. Math. 37 (1993), no. 1, 101–122. 10.1215/ijm/1255987252Suche in Google Scholar

[19] H. S. Shapiro and A. L. Shields, On the zeros of functions with finite Dirichlet integral and some related function spaces, Math. Z. 80 (1962), 217–229. 10.1007/BF01162379Suche in Google Scholar

[20] D. A. Stegenga, Multipliers of the Dirichlet space, Illinois J. Math. 24 (1980), no. 1, 113–139. 10.1215/ijm/1256047800Suche in Google Scholar

[21] B. A. Taylor and D. L. Williams, Zeros of Lipschitz functions analytic in the unit disc, Michigan Math. J. 18 (1971), 129–139. 10.1307/mmj/1029000636Suche in Google Scholar

[22] G. D. Taylor, Multipliers on Dα, Trans. Amer. Math. Soc. 123 (1966), 229–240. 10.1090/S0002-9947-1966-0206696-6Suche in Google Scholar

[23] J. Xiao, Holomorphic Q Classes, Lecture Notes in Math. 1767, Springer, Berlin, 2001. 10.1007/b87877Suche in Google Scholar

[24] J. Xiao, Geometric Qp Functions, Front. Math., Birkhäuser, Basel, 2006. Suche in Google Scholar

[25] J. Z. Zhou and Y. T. Wu, Decomposition theorems and conjugate pair in DK spaces, Acta Math. Sin. (Engl. Ser.) 30 (2014), no. 9, 1513–1525. 10.1007/s10114-014-3245-xSuche in Google Scholar

[26] K. Zhu, Operator Theory in Function Spaces, 2nd ed., Mathematical Surveys and Monographs 138, American Mathematical Society, Providence, 2007. 10.1090/surv/138Suche in Google Scholar

Received: 2016-06-15
Revised: 2016-12-23
Accepted: 2017-03-16
Published Online: 2018-10-30
Published in Print: 2020-12-01

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 1.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/gmj-2018-0064/html
Button zum nach oben scrollen