Startseite Riesz potential in the local Morrey–Lorentz spaces and some applications
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Riesz potential in the local Morrey–Lorentz spaces and some applications

  • Vagif S. Guliyev , Abdulhamit Kucukaslan , Canay Aykol und Ayhan Serbetci EMAIL logo
Veröffentlicht/Copyright: 30. Oktober 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper, the necessary and sufficient conditions are found for the boundedness of the Riesz potential Iα in the local Morrey–Lorentz spaces Mp,q;λloc(n). This result is applied to the boundedness of particular operators such as the fractional maximal operator, fractional Marcinkiewicz operator and fractional powers of some analytic semigroups on the local Morrey–Lorentz spaces Mp,q;λloc(n).

MSC 2010: 42B20; 42B35; 47G10

Funding statement: The research of V. S. Guliyev was partially supported by the grant of Science Development Foundation under the President of the Republic of Azerbaijan, Grant EIF-2013-9(15)-46/10/1.

Acknowledgements

The authors would like to express their gratitude to the referees for their valuable comments and suggestions.

References

[1] J. Alvarez, J. Lakey and M. Guzmán-Partida, Spaces of bounded λ-central mean oscillation, Morrey spaces, and λ-central Carleson measures, Collect. Math. 51 (2000), no. 1, 1–47. Suche in Google Scholar

[2] K. F. Andersen and B. Muckenhoupt, Weighted weak type Hardy inequalities with applications to Hilbert transforms and maximal functions, Studia Math. 72 (1982), no. 1, 9–26. 10.4064/sm-72-1-9-26Suche in Google Scholar

[3] C. Aykol, V. S. Guliyev, A. Kucukaslan and A. Serbetci, The boundedness of Hilbert transform in the local Morrey–Lorentz spaces, Integral Transforms Spec. Funct. 27 (2016), no. 4, 318–330. 10.1080/10652469.2015.1121483Suche in Google Scholar

[4] C. Aykol, V. S. Guliyev and A. Serbetci, Boundedness of the maximal operator in the local Morrey–Lorentz spaces, J. Inequal. Appl. 2013 (2013), Paper No. 346. 10.1186/1029-242X-2013-346Suche in Google Scholar

[5] C. Bennett and R. Sharpley, Interpolation of Operators, Pure Appl. Math. 129, Academic Press, Boston, 1988. Suche in Google Scholar

[6] V. I. Burenkov, H. V. Guliyev and V. S. Guliyev, Necessary and sufficient conditions for the boundedness of fractional maximal operators in local Morrey-type spaces, J. Comput. Appl. Math. 208 (2007), no. 1, 280–301. 10.1016/j.cam.2006.10.085Suche in Google Scholar

[7] V. I. Burenkov and V. S. Guliyev, Necessary and sufficient conditions for the boundedness of the Riesz potential in local Morrey-type spaces, Potential Anal. 30 (2009), no. 3, 211–249. 10.1007/s11118-008-9113-5Suche in Google Scholar

[8] V. I. Burenkov, V. S. Guliyev, A. Serbetci and T. V. Tararykova, Necessary and sufficient conditions for the boundedness of genuine singular integral operators in local Morrey-type spaces, Eurasian Math. J. 1 (2010), no. 1, 32–53. 10.1134/S1064562408050025Suche in Google Scholar

[9] A.-P. Calderón, Spaces between L1 and L and the theorem of Marcinkiewicz, Studia Math. 26 (1966), 273–299. 10.4064/sm-26-3-301-304Suche in Google Scholar

[10] F. Chiarenza and M. Frasca, Morrey spaces and Hardy–Littlewood maximal function, Rend. Mat. Appl. (7) 7 (1987), no. 3–4, 273–279. Suche in Google Scholar

[11] G. Di Fazio and M. A. Ragusa, Commutators and Morrey spaces, Boll. Unione Mat. Ital. A (7) 5 (1991), no. 3, 323–332. Suche in Google Scholar

[12] V. S. Guliyev, Integral operators on function spaces on the homogeneous groups and on domains in n, (in Russian), Doctor’s degree dissertation, Steklov Mathematical Institute, Moscow, 1994. Suche in Google Scholar

[13] V. S. Guliyev, Function Spaces, Integral Operators and Two Weighted Inequalities on Homogeneous Groups. Some Applications (in Russian), Elm, Baku, 1999. Suche in Google Scholar

[14] V. S. Guliyev, C. Aykol, A. Kucukaslan and A. Serbetci, Maximal operator and Calderon–Zygmund operators in local Morrey–Lorentz spaces, Integral Transforms Spec. Funct. 27 (2016), no. 11, 866–877. 10.1080/10652469.2016.1227329Suche in Google Scholar

[15] V. S. Guliyev, A. Serbetci and I. Ekincioglu, Necessary and sufficient conditions for the boundedness of rough B-fractional integral operators in the Lorentz spaces, J. Math. Anal. Appl. 336 (2007), no. 1, 425–437. 10.1016/j.jmaa.2007.02.080Suche in Google Scholar

[16] K.-P. Ho, Sobolev–Jawerth embedding of Triebel–Lizorkin–Morrey–Lorentz spaces and fractional integral operator on Hardy type spaces, Math. Nachr. 287 (2014), no. 14–15, 1674–1686. 10.1002/mana.201300217Suche in Google Scholar

[17] S. Lu, Y. Ding and D. Yan, Singular Integrals and Related Topics, World Scientific, Hackensack, 2007. 10.1142/6428Suche in Google Scholar

[18] G. Mingione, Gradient estimates below the duality exponent, Math. Ann. 346 (2010), no. 3, 571–627. 10.1007/s00208-009-0411-zSuche in Google Scholar

[19] R. O’Neil, Convolution operators and L(p,q) spaces, Duke Math. J. 30 (1963), 129–142. 10.1215/S0012-7094-63-03015-1Suche in Google Scholar

[20] M. A. Ragusa, Embeddings for Morrey–Lorentz spaces, J. Optim. Theory Appl. 154 (2012), no. 2, 491–499. 10.1007/s10957-012-0012-ySuche in Google Scholar

[21] N. Samko, Weighted Hardy and singular operators in Morrey spaces, J. Math. Anal. Appl. 350 (2009), no. 1, 56–72. 10.1016/j.jmaa.2008.09.021Suche in Google Scholar

[22] N. Samko, Weighted Hardy and potential operators in Morrey spaces, J. Funct. Spaces Appl. 2012 (2012), Article ID 678171. 10.1155/2012/678171Suche in Google Scholar

[23] E. Sawyer, Boundedness of classical operators on classical Lorentz spaces, Studia Math. 96 (1990), no. 2, 145–158. 10.4064/sm-96-2-145-158Suche in Google Scholar

[24] E. M. Stein, On the functions of Littlewood–Paley, Lusin, and Marcinkiewicz, Trans. Amer. Math. Soc. 88 (1958), 430–466. 10.1090/S0002-9947-1958-0112932-2Suche in Google Scholar

[25] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Math. Ser. 30, Princeton University Press, Princeton, 1970. 10.1515/9781400883882Suche in Google Scholar

Received: 2016-06-17
Revised: 2016-10-10
Accepted: 2017-01-12
Published Online: 2018-10-30
Published in Print: 2020-12-01

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 22.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/gmj-2018-0065/html
Button zum nach oben scrollen