Startseite Weighted grand mixed-norm Lebesgue spaces and boundedness criteria for integral operators
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Weighted grand mixed-norm Lebesgue spaces and boundedness criteria for integral operators

  • Vakhtang Kokilashvili EMAIL logo
Veröffentlicht/Copyright: 11. August 2020
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

A new scale of weighted grand mixed norm Lebesgue spaces Lw1p1,φ1(Lw2p2,φ2) is introduced and the boundedness criteria for multiple singular operators are established.

Award Identifier / Grant number: FR-18-2499

Funding statement: This work was supported by Shota Rustaveli National Scientific Foundation grant (contract number: FR-18-2499).

References

[1] A. Benedek and R. Panzone, The space Lp, with mixed norm, Duke Math. J. 28 (1961), 301–324. 10.1215/S0012-7094-61-02828-9Suche in Google Scholar

[2] C. Capone, M. R. Formica and R. Giova, Grand Lebesgue spaces with respect to measurable functions, Nonlinear Anal. 85 (2013), 125–131. 10.1016/j.na.2013.02.021Suche in Google Scholar

[3] L. D’Onofrio, C. Sbordone and R. Schiattarella, Grand Sobolev spaces and their applications in geometric function theory and PDEs, J. Fixed Point Theory Appl. 13 (2013), no. 2, 309–340. 10.1007/s11784-013-0140-5Suche in Google Scholar

[4] D. E. Edmunds, V. Kokilashvili and A. Meskhi, Bounded and Compact Integral Operators, Math. Appl. 543, Kluwer Academic, Dordrecht, 2002. 10.1007/978-94-015-9922-1Suche in Google Scholar

[5] A. Fiorenza, M. R. Formica and J. M. Rakotoson, Pointwise estimates for GΓ-functions and applications, Differential Integral Equations 30 (2017), no. 11–12, 809–824. 10.57262/die/1504231274Suche in Google Scholar

[6] A. Fiorenza, B. Gupta and P. Jain, The maximal theorem for weighted grand Lebesgue spaces, Studia Math. 188 (2008), no. 2, 123–133. 10.4064/sm188-2-2Suche in Google Scholar

[7] A. Fiorenza and V. Kokilashvili, Nonlinear harmonic analysis of integral operators in weighted grand Lebesgue spaces and applications, Ann. Funct. Anal. 9 (2018), no. 3, 413–425. 10.1215/20088752-2017-0056Suche in Google Scholar

[8] N. Fusco, P.-L. Lions and C. Sbordone, Sobolev imbedding theorems in borderline cases, Proc. Amer. Math. Soc. 124 (1996), no. 2, 561–565. 10.1090/S0002-9939-96-03136-XSuche in Google Scholar

[9] A. R. Galmarino and R. Panzone, Lp-spaces with mixed norm, for P a sequence, J. Math. Anal. Appl. 10 (1965), 494–518. 10.1016/0022-247X(65)90110-1Suche in Google Scholar

[10] L. Greco, T. Iwaniec and C. Sbordone, Inverting the p-harmonic operator, Manuscripta Math. 92 (1997), no. 2, 249–258. 10.1007/BF02678192Suche in Google Scholar

[11] T. Iwaniec and C. Sbordone, On the integrability of the Jacobian under minimal hypotheses, Arch. Ration. Mech. Anal. 119 (1992), no. 2, 129–143. 10.1007/BF00375119Suche in Google Scholar

[12] V. Kokilashvili, Boundedness criteria for singular integrals in weighted grand Lebesgue spaces, J. Math. Sci. (N. Y.) 170 (2010), 20–33. 10.1007/s10958-010-0076-xSuche in Google Scholar

[13] V. Kokilashvili and A. Meskhi, A note on the boundedness of the Hilbert transform in weighted grand Lebesgue spaces, Georgian Math. J. 16 (2009), no. 3, 547–551. 10.1515/GMJ.2009.547Suche in Google Scholar

[14] V. Kokilashvili and A. Meskhi, Trace inequalities for fractional integrals in grand Lebesgue spaces, Studia Math. 210 (2012), no. 2, 159–176. 10.4064/sm210-2-4Suche in Google Scholar

[15] V. Kokilashvili and A. Meskhi, Potentials with product kernels in grand Lebesgue spaces: One-weight criteria, Lith. Math. J. 53 (2013), no. 1, 27–39. 10.1007/s10986-013-9191-ySuche in Google Scholar

[16] V. Kokilashvili and A. Meskhi, One-weight weak type estimates for fractional and singular integrals in grand Lebesgue spaces, Function Spaces X, Banach Center Publ. 102, Polish Academy of Sciences, Warsaw (2014), 131–142. 10.4064/bc102-0-9Suche in Google Scholar

[17] V. Kokilashvili, A. Meskhi, H. Rafeiro and S. Samko, Integral Operators in Non-standard Function Spaces. Vol. 2, Oper. Theory Adv. Appl. 249, Birkhäuser/Springer, Cham, 2016. 10.1007/978-3-319-21018-6Suche in Google Scholar

[18] V. M. Kokilashvili, Weighted Lizorkin–Triebel spaces. Singular integrals, multipliers, imbedding theorems (in Russian), Trudy Mat. Inst. Steklov. 161 (1983), 125–149; translation in Proc. Steklov Inst. Math. 161 (1984), 135–162. Suche in Google Scholar

[19] D. S. Kurtz, Classical operators on mixed-normed spaces with product weights, Rocky Mountain J. Math. 37 (2007), no. 1, 269–283. 10.1216/rmjm/1181069331Suche in Google Scholar

[20] P. I. Lizorkin, Multipliers of Fourier integrals and estimates of convolutions in spaces with mixed norm. Applications (in Russian), Izv. Akad. Nauk SSSR Ser. Mat. 34 (1970), 218–247; translation in Math. USSR-Izv. 4 (1970), no. 1, 225–255. Suche in Google Scholar

[21] S. G. Samko and S. M. Umarkhadzhiev, On Iwaniec-Sbordone spaces on sets which may have infinite measure, Azerb. J. Math. 1 (2011), no. 1, 67–84. Suche in Google Scholar

[22] T. Sjödin, Weighted norm inequalities for Riesz potentials and fractional maximal functions in mixed norm Lebesgue spaces, Studia Math. 97 (1991), no. 3, 239–244. 10.4064/sm-97-3-239-244Suche in Google Scholar

Received: 2019-05-03
Accepted: 2019-10-16
Published Online: 2020-08-11
Published in Print: 2020-12-01

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 22.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/gmj-2020-2071/html
Button zum nach oben scrollen