Startseite Stabilization of 3D Navier–Stokes–Voigt equations
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Stabilization of 3D Navier–Stokes–Voigt equations

  • Cung The Anh EMAIL logo und Nguyen Viet Tuan
Veröffentlicht/Copyright: 5. Dezember 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

We consider 3D Navier–Stokes–Voigt equations in smooth bounded domains with homogeneous Dirichlet boundary conditions. First, we study the existence and exponential stability of strong stationary solutions to the problem. Then we show that any unstable steady state can be exponentially stabilized by using either an internal feedback control with a support large enough or a multiplicative Itô noise of sufficient intensity.

MSC 2010: 35Q35; 35B40; 60H15

Award Identifier / Grant number: 101.02-2015.10

Funding statement: This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 101.02-2015.10.

References

[1] C. T. Anh and P. T. Trang, Pull-back attractors for three-dimensional Navier–Stokes–Voigt equations in some unbounded domains, Proc. Roy. Soc. Edinburgh Sect. A 143 (2013), no. 2, 223–251. 10.1017/S0308210511001491Suche in Google Scholar

[2] C. T. Anh and P. T. Trang, Decay rate of solutions to 3D Navier–Stokes–Voigt equations in Hm spaces, Appl. Math. Lett. 61 (2016), 1–7. 10.1016/j.aml.2016.04.015Suche in Google Scholar

[3] L.-I. Anita and S. Anita, Characterization of the internal stabilizability of the diffusion equation, Nonlinear Stud. 8 (2001), no. 2, 193–202. Suche in Google Scholar

[4] V. Barbu and C. Lefter, Internal stabilizability of the Navier–Stokes equations, Systems Control Lett. 48 (2003), no. 3–4, 161–167. 10.1016/S0167-6911(02)00261-XSuche in Google Scholar

[5] V. Barbu and S. S. Sritharan, Feedback stabilization of the magneto-hydrodynamic system, Semigroups of Operators: Theory and Applications (Rio de Janeiro 2001), Optimization Software, New York (2002), 45–53. Suche in Google Scholar

[6] Y. Cao, E. M. Lunasin and E. S. Titi, Global well-posedness of the three-dimensional viscous and inviscid simplified Bardina turbulence models, Commun. Math. Sci. 4 (2006), no. 4, 823–848. 10.4310/CMS.2006.v4.n4.a8Suche in Google Scholar

[7] T. Caraballo, J. A. Langa and J. C. Robinson, Stability and random attractors for a reaction-diffusion equation with multiplicative noise, Discrete Contin. Dyn. Syst. 6 (2000), no. 4, 875–892. 10.3934/dcds.2000.6.875Suche in Google Scholar

[8] T. Caraballo, J. A. Langa and T. Taniguchi, The exponential behaviour and stabilizability of stochastic 2D-Navier–Stokes equations, J. Differential Equations 179 (2002), no. 2, 714–737. 10.1006/jdeq.2001.4037Suche in Google Scholar

[9] T. Caraballo, K. Liu and X. Mao, On stabilization of partial differential equations by noise, Nagoya Math. J. 161 (2001), 155–170. 10.1017/S0027763000022169Suche in Google Scholar

[10] T. Caraballo, A. M. Márquez-Durán and J. Real, The asymptotic behaviour of a stochastic 3D LANS-α model, Appl. Math. Optim. 53 (2006), no. 2, 141–161. 10.1007/s00245-005-0839-9Suche in Google Scholar

[11] A. O. Çelebı, V. K. Kalantarov and M. Polat, Global attractors for 2D Navier–Stokes–Voight equations in an unbounded domain, Appl. Anal. 88 (2009), no. 3, 381–392. 10.1080/00036810902766682Suche in Google Scholar

[12] P. Constantin and C. Foias, Navier–StokesEquations, Chicago Lectures in Math., University of Chicago Press, Chicago, 1988. 10.7208/chicago/9780226764320.001.0001Suche in Google Scholar

[13] M. A. Ebrahimi, M. Holst and E. Lunasin, The Navier–Stokes–Voight model for image inpainting, IMA J. Appl. Math. 78 (2013), no. 5, 869–894. 10.1093/imamat/hxr069Suche in Google Scholar

[14] G. P. Galdi, An Introduction to the Mathematical Theory of the Navier–Stokes Equations, 2nd ed., SpringerMonogr. Math., Springer, New York, 2011. 10.1007/978-0-387-09620-9Suche in Google Scholar

[15] J. García-Luengo, P. Marín-Rubio and J. Real, Pullback attractors for three-dimensional non-autonomous Navier–Stokes–Voigt equations, Nonlinearity 25 (2012), no. 4, 905–930. 10.1088/0951-7715/25/4/905Suche in Google Scholar

[16] M. Holst, E. Lunasin and G. Tsogtgerel, Analysis of a general family of regularized Navier–Stokes and MHD models, J. Nonlinear Sci. 20 (2010), no. 5, 523–567. 10.1007/s00332-010-9066-xSuche in Google Scholar

[17] V. K. Kalantarov and E. S. Titi, Global attractors and determining modes for the 3D Navier–Stokes–Voight equations, Chin. Ann. Math. Ser. B 30 (2009), no. 6, 697–714. 10.1007/s11401-009-0205-3Suche in Google Scholar

[18] C. J. Niche, Decay characterization of solutions to Navier–Stokes–Voigt equations in terms of the initial datum, J. Differential Equations 260 (2016), no. 5, 4440–4453. 10.1016/j.jde.2015.11.014Suche in Google Scholar

[19] A. P. Oskolkov, The uniqueness and solvability in the large of boundary value problems for the equations of motion of aqueous solutions of polymers (in Russian), Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 38 (1973), 98–136. Suche in Google Scholar

[20] P. A. Razafimandimby and M. Sango, On the exponential behaviour of stochastic evolution equations for non-Newtonian fluids, Appl. Anal. 91 (2012), no. 12, 2217–2233. 10.1080/00036811.2011.598861Suche in Google Scholar

[21] J. C. Robinson, Infinite-Dimensional Dynamical Systems, Cambridge Texts Appl. Math., Cambridge University Press, Cambridge, 2001. 10.1007/978-94-010-0732-0Suche in Google Scholar

[22] R. Temam, Navier–Stokes Equations, revised ed., Stud. Math. Appl. 2, North-Holland, Amsterdam, 1979. Suche in Google Scholar

[23] G. Wang, Stabilization of the Boussinesq equation via internal feedback controls, Nonlinear Anal. 52 (2003), no. 2, 485–506. 10.1016/S0362-546X(02)00114-1Suche in Google Scholar

[24] G. Yue and C. Zhong, Attractors for autonomous and nonautonomous 3D Navier–Stokes–Voight equations, Discrete Contin. Dyn. Syst. Ser. B 16 (2011), no. 3, 985–1002. 10.3934/dcdsb.2011.16.985Suche in Google Scholar

[25] C. Zhao and H. Zhu, Upper bound of decay rate for solutions to the Navier–Stokes–Voigt equations in 3, Appl. Math. Comput. 256 (2015), 183–191. 10.1016/j.amc.2014.12.131Suche in Google Scholar

Received: 2016-10-28
Revised: 2017-05-02
Accepted: 2017-08-13
Published Online: 2018-12-05
Published in Print: 2020-12-01

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/gmj-2018-0067/html
Button zum nach oben scrollen