Home Inner functions as multipliers and zero sets in weighted Dirichlet spaces
Article
Licensed
Unlicensed Requires Authentication

Inner functions as multipliers and zero sets in weighted Dirichlet spaces

  • Liu Yang EMAIL logo
Published/Copyright: October 30, 2018
Become an author with De Gruyter Brill

Abstract

In this note, using some conditions on the weight function K, we investigate the inner functions as multipliers in weighted Dirichlet spaces, and we also discuss zero sets.

MSC 2010: 30D45; 30D50

Award Identifier / Grant number: 11471202

Funding statement: This work was supported by NSF of China (No. 11471202).

References

[1] A. Aleman, Hilbert spaces of analytic functions between the Hardy and the Dirichlet space, Proc. Amer. Math. Soc. 115 (1992), no. 1, 97–104. 10.1090/S0002-9939-1992-1079693-XSearch in Google Scholar

[2] G. Bao, Z. Lou, R. Qian and H. Wulan, On multipliers of Dirichlet type spaces, Complex Anal. Oper. Theory 9 (2015), no. 8, 1701–1732. 10.1007/s11785-015-0444-0Search in Google Scholar

[3] B. Böe, A norm on the holomorphic Besov space, Proc. Amer. Math. Soc. 131 (2003), no. 1, 235–241. 10.1090/S0002-9939-02-06529-2Search in Google Scholar

[4] L. Carleson, On a class of meromorphic functions and its associated exceptional sets, Thesis, University of Uppsala, 1950. Search in Google Scholar

[5] L. Carleson, On the zeros of functions with bounded Dirichlet integrals, Math. Z. 56 (1952), 289–295. 10.1007/BF01174755Search in Google Scholar

[6] J. G. Caughran, Two results concerning the zeros of functions with finite Dirichlet integral, Canad. J. Math. 21 (1969), 312–316. 10.4153/CJM-1969-033-5Search in Google Scholar

[7] P. L. Duren, Theory of Hp Spaces, Pure Appl. Math. 38, Academic Press, New York, 1970. Search in Google Scholar

[8] O. El-Fallah, K. Kellay, J. Mashreghi and T. Ransford, A Primer on the Dirichlet Space, Cambridge Tracts in Math. 203, Cambridge University Press, Cambridge, 2014. 10.1017/CBO9781107239425Search in Google Scholar

[9] M. Essén, H. Wulan and J. Xiao, Several function-theoretic characterizations of Möbius invariant 𝒬K spaces, J. Funct. Anal. 230 (2006), no. 1, 78–115. 10.1016/j.jfa.2005.07.004Search in Google Scholar

[10] J. B. Garnett, Bounded Analytic Functions, Pure Appl. Math. 96, Academic Press, New York, 1981. Search in Google Scholar

[11] H. K. Hedenmalm, On the f- and K-properties of certain function spaces, Commutative Harmonic Analysis (Canton 1987), Contemp. Math. 91, American Mathematical Society, Providence (1989), 89–91. 10.1090/conm/091/1002590Search in Google Scholar

[12] R. Kerman and E. Sawyer, Carleson measures and multipliers of Dirichlet-type spaces, Trans. Amer. Math. Soc. 309 (1988), no. 1, 87–98. 10.1090/S0002-9947-1988-0957062-1Search in Google Scholar

[13] J. Pau and J. A. Peláez, On the zeros of functions in Dirichlet-type spaces, Trans. Amer. Math. Soc. 363 (2011), no. 4, 1981–2002. 10.1090/S0002-9947-2010-05108-6Search in Google Scholar

[14] J. Pau and J. A. Peláez, Schatten classes of integration operators on Dirichlet spaces, J. Anal. Math. 120 (2013), 255–289. 10.1007/s11854-013-0020-3Search in Google Scholar

[15] J. A. Peláez, Inner functions as improving multipliers, J. Funct. Anal. 255 (2008), no. 6, 1403–1418. 10.1016/j.jfa.2008.06.010Search in Google Scholar

[16] R. Qian and Y. Shi, Inner function in Dirichlet type spaces, J. Math. Anal. Appl. 421 (2015), no. 2, 1844–1854. 10.1016/j.jmaa.2014.08.011Search in Google Scholar

[17] M. Rabindranathan, Toeplitz operators and division by inner functions, Indiana Univ. Math. J. 22 (1972/73), 523–529. 10.1512/iumj.1973.22.22044Search in Google Scholar

[18] R. Rochberg and Z. J. Wu, A new characterization of Dirichlet type spaces and applications, Illinois J. Math. 37 (1993), no. 1, 101–122. 10.1215/ijm/1255987252Search in Google Scholar

[19] H. S. Shapiro and A. L. Shields, On the zeros of functions with finite Dirichlet integral and some related function spaces, Math. Z. 80 (1962), 217–229. 10.1007/BF01162379Search in Google Scholar

[20] D. A. Stegenga, Multipliers of the Dirichlet space, Illinois J. Math. 24 (1980), no. 1, 113–139. 10.1215/ijm/1256047800Search in Google Scholar

[21] B. A. Taylor and D. L. Williams, Zeros of Lipschitz functions analytic in the unit disc, Michigan Math. J. 18 (1971), 129–139. 10.1307/mmj/1029000636Search in Google Scholar

[22] G. D. Taylor, Multipliers on Dα, Trans. Amer. Math. Soc. 123 (1966), 229–240. 10.1090/S0002-9947-1966-0206696-6Search in Google Scholar

[23] J. Xiao, Holomorphic Q Classes, Lecture Notes in Math. 1767, Springer, Berlin, 2001. 10.1007/b87877Search in Google Scholar

[24] J. Xiao, Geometric Qp Functions, Front. Math., Birkhäuser, Basel, 2006. Search in Google Scholar

[25] J. Z. Zhou and Y. T. Wu, Decomposition theorems and conjugate pair in DK spaces, Acta Math. Sin. (Engl. Ser.) 30 (2014), no. 9, 1513–1525. 10.1007/s10114-014-3245-xSearch in Google Scholar

[26] K. Zhu, Operator Theory in Function Spaces, 2nd ed., Mathematical Surveys and Monographs 138, American Mathematical Society, Providence, 2007. 10.1090/surv/138Search in Google Scholar

Received: 2016-06-15
Revised: 2016-12-23
Accepted: 2017-03-16
Published Online: 2018-10-30
Published in Print: 2020-12-01

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 22.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/gmj-2018-0064/html
Scroll to top button