Home L2 boundedness for commutators of fractional differential type Marcinkiewicz integral with rough variable kernel and BMO Sobolev spaces
Article
Licensed
Unlicensed Requires Authentication

L2 boundedness for commutators of fractional differential type Marcinkiewicz integral with rough variable kernel and BMO Sobolev spaces

  • Yanping Chen , Yong Ding and Kai Zhu EMAIL logo
Published/Copyright: February 15, 2019
Become an author with De Gruyter Brill

Abstract

In this paper, for 0<γ<1 and bIγ(BMO), the authors give the L2(n) boundedness of μγ;b, the commutator of a fractional differential type Marcinkiewicz integral with rough variable kernel, which is an extension of some known results.

MSC 2010: 42B20; 42B25

Award Identifier / Grant number: 11471033

Award Identifier / Grant number: 11371057

Funding statement: Y. Chen is supported by NSF of China (Grant: 11471033), NCET of China (Grant: NCET-11-0574) and the Fundamental Research Funds for the Central Universities (Grant: FRF-TP-12-006B). Y. Ding is supported by NSF of China (Grant: 11371057) and SRFDP of China (Grant: 20130003110003).

References

[1] H. M. Al-Qassem and A. J. Al-Salman, A note on Marcinkiewicz integral operators, J. Math. Anal. Appl. 282 (2003), no. 2, 698–710. 10.1016/S0022-247X(03)00244-0Search in Google Scholar

[2] A. Al-Salman, H. Al-Qassem, L. C. Cheng and Y. Pan, Lp bounds for the function of Marcinkiewicz, Math. Res. Lett. 9 (2002), no. 5–6, 697–700. 10.4310/MRL.2002.v9.n5.a11Search in Google Scholar

[3] A. Benedek, A.-P. Calderón and R. Panzone, Convolution operators on Banach space valued functions, Proc. Natl. Acad. Sci. USA 48 (1962), 356–365. 10.1073/pnas.48.3.356Search in Google Scholar PubMed PubMed Central

[4] A. P. Calderón and A. Zygmund, On a problem of Mihlin, Trans. Amer. Math. Soc. 78 (1955), 209–224. 10.1007/978-94-009-1045-4_7Search in Google Scholar

[5] A.-P. Calderón and A. Zygmund, Singular integral operators and differential equations, Amer. J. Math. 79 (1957), 901–921. 10.1007/978-94-009-1045-4_15Search in Google Scholar

[6] A.-P. Calderón and A. Zygmund, On singular integrals with variable kernels, Appl. Anal. 7 (1977/78), no. 3, 221–238. 10.1080/00036817808839193Search in Google Scholar

[7] J. Chen, D. Fan and Y. Ying, Certain operators with rough singular kernels, Canad. J. Math. 55 (2003), no. 3, 504–532. 10.4153/CJM-2003-021-4Search in Google Scholar

[8] Y. Chen and Y. Ding, Boundedness of commutators of Marcinkiewicz integral with rough variable kernel, Integral Equations Operator Theory 61 (2008), no. 4, 477–492. 10.1007/s00020-008-1601-xSearch in Google Scholar

[9] Y. Chen and Y. Ding, Boundedness for commutators of rough hypersingular integrals with variable kernels, Michigan Math. J. 59 (2010), no. 1, 189–210. 10.1307/mmj/1272376033Search in Google Scholar

[10] Y. Chen and Y. Ding, Sharp bounds for the commutators with variable kernels of fractional differentiations and BMO Sobolev spaces, Nonlinear Anal. 116 (2015), 85–99. 10.1016/j.na.2014.12.018Search in Google Scholar

[11] F. Chiarenza, M. Frasca and P. Longo, Interior W2,p estimates for nondivergence elliptic equations with discontinuous coefficients, Ric. Mat. 40 (1991), no. 1, 149–168. Search in Google Scholar

[12] R. R. Coifman, R. Rochberg and G. Weiss, Factorization theorems for Hardy spaces in several variables, Ann. of Math. (2) 103 (1976), no. 3, 611–635. 10.2307/1970954Search in Google Scholar

[13] Y. Ding, D. Fan and Y. Pan, Weighted boundedness for a class of rough Marcinkiewicz integrals, Indiana Univ. Math. J. 48 (1999), no. 3, 1037–1055. 10.1512/iumj.1999.48.1696Search in Google Scholar

[14] Y. Ding, D. Fan and Y. Pan, Lp-boundedness of Marcinkiewicz integrals with Hardy space function kernels, Acta Math. Sin. (Engl. Ser.) 16 (2000), no. 4, 593–600. 10.1007/s101140000015Search in Google Scholar

[15] Y. Ding, C.-C. Lin and S. Shao, On the Marcinkiewicz integral with variable kernels, Indiana Univ. Math. J. 53 (2004), no. 3, 805–821. 10.1512/iumj.2004.53.2406Search in Google Scholar

[16] Y. Ding, S. Lu and K. Yabuta, On commutators of Marcinkiewicz integrals with rough kernel, J. Math. Anal. Appl. 275 (2002), no. 1, 60–68. 10.1016/S0022-247X(02)00230-5Search in Google Scholar

[17] D. Fan and Y. Pan, L2-boundedness of a singular integral operator, Publ. Mat. 41 (1997), no. 2, 317–333. 10.5565/PUBLMAT_41297_01Search in Google Scholar

[18] M. Sakamoto and K. Yabuta, Boundedness of Marcinkiewicz functions, Studia Math. 135 (1999), no. 2, 103–142. Search in Google Scholar

[19] E. M. Stein, On the functions of Littlewood–Paley, Lusin, and Marcinkiewicz, Trans. Amer. Math. Soc. 88 (1958), 430–466. 10.1090/S0002-9947-1958-0112932-2Search in Google Scholar

[20] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Math. Ser. 32, Princeton University Press, Princeton, 1971. Search in Google Scholar

[21] R. S. Strichartz, Bounded mean oscillation and Sobolev spaces, Indiana Univ. Math. J. 29 (1980), no. 4, 539–558. 10.1512/iumj.1980.29.29041Search in Google Scholar

[22] A. Torchinsky and S. L. Wang, A note on the Marcinkiewicz integral, Colloq. Math. 60/61 (1990), no. 1, 235–243. 10.4064/cm-60-61-1-235-243Search in Google Scholar

[23] T. Walsh, On the function of Marcinkiewicz, Studia Math. 44 (1972), 203–217. 10.4064/sm-44-3-203-217Search in Google Scholar

[24] G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University, Cambridge, 1944. Search in Google Scholar

[25] H. Wu, On Marcinkiewicz integral operators with rough kernels, Integral Equations Operator Theory 52 (2005), no. 2, 285–298. 10.1007/s00020-004-1339-zSearch in Google Scholar

Received: 2016-04-18
Revised: 2018-04-13
Accepted: 2018-04-26
Published Online: 2019-02-15
Published in Print: 2020-12-01

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 23.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/gmj-2019-2004/html
Scroll to top button