Startseite Mathematik Non-perturbative graph languages, halting problem and complexity
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Non-perturbative graph languages, halting problem and complexity

  • Ali Shojaei-Fard ORCID logo EMAIL logo
Veröffentlicht/Copyright: 30. Juni 2022

Abstract

We explain the foundations of a new class of formal languages for the construction of large Feynman diagrams which contribute to solutions of all combinatorial Dyson–Schwinger equations in a given strongly coupled gauge field theory. Then we build a new Hopf algebraic structure on non-perturbative production rules which leads us to formulate the halting problem for the corresponding replacing–gluing graph grammars in our formal graph languages on the basis of Manin’s renormalization Hopf algebra. In addition, we apply topology of graphons to associate a complexity parameter to this new class of graph grammars. At the final step, we address some applications of our new formal language platform to Quantum Field Theory. The first application concerns the constructive role of non-perturbative graph languages in dealing with quantum gauge symmetries in the context of the Hopf ideals generated by Slavnov–Taylor or Ward–Takahashi identities. The second application concerns the importance of the complexities of non-perturbative replacing–gluing graph grammars in formulating a new generalization of the circuit complexity on the space of Dyson–Schwinger equations. We provide a geometric interpretation of non-perturbative circuit complexities. The third application concerns the impact of non-perturbative replacing–gluing graph grammars in providing some new tools for the computation of the Kolmogorov complexity of Dyson–Schwinger equations.


Communicated by Jan Frahm


Acknowledgements

The author would like to thank the referee because of addressing references [14, 35], which were helpful to clarify some new applications of non-perturbative formal graph languages to Quantum Field Theory.

References

[1] M. Bachmann, H. Kleinert and A. Pelster, Recursive graphical construction of Feynman diagrams in quantum electrodynamics, Phys. Rev. D (3) 61 (2000), no. 8, Article ID 085017. 10.1103/PhysRevD.61.085017Suche in Google Scholar

[2] C. Borgs, J. T. Chayes, H. Cohn and N. Holden, Sparse exchangeable graphs and their limits via graphon processes, J. Mach. Learn. Res. 18 (2017), Paper No. 210. Suche in Google Scholar

[3] C. Brouder, A. Frabetti and F. Menous, Combinatorial Hopf algebras from renormalization, J. Algebraic Combin. 32 (2010), no. 4, 557–578. 10.1007/s10801-010-0227-7Suche in Google Scholar

[4] D. Calaque and T. Strobl, Mathematical Aspects of Quantum Field Theory, Math. Phys. Stud., Springer, Cham, 2015. 10.1007/978-3-319-09949-1Suche in Google Scholar

[5] E. Dagotto, A new phase of QED in strong coupling: A guide for the perplexed, Vacuum Structure in Intense Fields, NATO ASI Ser. 255, Plenum Press, New York (1991), 195–221. 10.1007/978-1-4757-0441-9_12Suche in Google Scholar

[6] M. D. Davis and E. J. Weyuker, Computability, Complexity, and Languages, Comput. Sci. Appl. Math., Academic Press, New York, 1983. 10.1016/B978-0-12-206380-0.50020-1Suche in Google Scholar

[7] C. Delaney and M. Marcolli, Dyson–Schwinger equations in the theory of computation, Feynman Amplitudes, Periods and Motives, Contemp. Math. 648, American Mathematical Society, Providence (2015), 79–107. 10.1090/conm/648/12999Suche in Google Scholar

[8] M. Dütsch and K. Fredenhagen, The master Ward identity and generalized Schwinger–Dyson equation in classical field theory, Comm. Math. Phys. 243 (2003), no. 2, 275–314. 10.1007/s00220-003-0968-4Suche in Google Scholar

[9] H. Ehrig, Tutorial introduction to the algebraic approach of graph grammars, Graph-Grammars and Their Application to Computer Science, Lecture Notes in Comput. Sci. 291, Springer, Berlin (1987), 3–14. 10.1007/3-540-18771-5_40Suche in Google Scholar

[10] H. Ehrig, A. Habel and H. J. Kreowski, Introduction to graph grammars with applications to semantic networks, Comput. Math. Appl. 23 (1992), no. 6–9, 557–572. 10.1016/0898-1221(92)90124-ZSuche in Google Scholar

[11] H. Ehrig, H.-J. Kreowski and G. Rozenberg, Graph Grammars and Their Application to Computer Science, Lecture Notes in Comput. Sci. 532, Springer, Berlin, 1990. 10.1007/BFb0017372Suche in Google Scholar

[12] H. Fahmy and D. Blostein, A survey of graph grammars: Theory and applications, 11th IAPR International Conference on Pattern Recognition. Vol. II. Conference B: Pattern Recognition Methodology and Systems, IEEE Press, Piscataway (1992), 294–298. 10.1109/ICPR.1992.201776Suche in Google Scholar

[13] S. Janson, Graphons, Cut Norm and Distance, Couplings and Rearrangements, NYJM Monogr. 4, State University of New York, New York, 2013. Suche in Google Scholar

[14] R. A. Jefferson and R. C. Myers, Circuit complexity in quantum field theory, J. High Energy Phys. 2017 (2017), no. 10, Paper No. 107. 10.1007/JHEP10(2017)107Suche in Google Scholar

[15] H. Kleinert, A. Pelster, B. Kastening and M. Bachmann, Recursive graphical construction of Feynman diagrams and their multiplicities in ϕ 4 and in ϕ 2 A theory, Phys. Rev. E 62 (2000), 1537–1559. 10.1103/PhysRevE.62.1537Suche in Google Scholar

[16] K. Kondo, Transverse Ward–Takahashi identity, anomaly and Schwinger–Dyson equation, Internat. J. Modern Phys. A 12 (1997), 5651–5686. 10.1142/S0217751X97002978Suche in Google Scholar

[17] D. Kreimer, On the Hopf algebra structure of perturbative quantum field theories, Adv. Theor. Math. Phys. 2 (1998), no. 2, 303–334. 10.4310/ATMP.1998.v2.n2.a4Suche in Google Scholar

[18] D. Kreimer, Unique factorization in perturbative QFT, Nuclear Phys. B 116 (2003), 392–396. 10.1016/S0920-5632(03)80206-2Suche in Google Scholar

[19] D. Kreimer, Structures in Feynman graphs: Hopf algebras and symmetries, Graphs and Patterns in Mathematics and Theoretical Physics, Proc. Sympos. Pure Math. 73, American Mathematical Society, Providence (2005), 43–78. 10.1090/pspum/073/2131011Suche in Google Scholar

[20] D. Kreimer, Anatomy of a gauge theory, Ann. Phys. 321 (2006), no. 12, 2757–2781. 10.1016/j.aop.2006.01.004Suche in Google Scholar

[21] L. Lovász, Very large graphs, Current Developments in Mathematics 2008, International Press, Somerville (2009), 67–128. 10.4310/CDM.2008.v2008.n1.a2Suche in Google Scholar

[22] Y. I. Manin, Infinities in quantum field theory and in classical computing: Renormalization program, Programs, Proofs, Processes, Lecture Notes in Comput. Sci. 6158, Springer, Berlin (2010), 307–316. 10.1007/978-3-642-13962-8_34Suche in Google Scholar

[23] Y. I. Manin, Renormalisation and computation II: Time cut-off and the halting problem, Math. Structures Comput. Sci. 22 (2012), no. 5, 729–751. 10.1017/S0960129511000508Suche in Google Scholar

[24] Y. I. Manin, Renormalization and computation I: Motivation and background, OPERADS 2009, Sémin. Congr. 26, Société Mathématique de France, Paris (2013), 181–222. Suche in Google Scholar

[25] M. Marcolli and A. Port, Graph grammars, insertion Lie algebras, and quantum field theory, Math. Comput. Sci. 9 (2015), no. 4, 391–408. 10.1007/s11786-015-0236-ySuche in Google Scholar

[26] H. Okabe, Formal expressions of infinite graphs and their families, Inform. and Control 44 (1980), no. 2, 164–186. 10.1016/S0019-9958(80)90074-1Suche in Google Scholar

[27] A. Shojaei-Fard, A new perspective on intermediate algorithms via the Riemann–Hilbert correspondence, Quantum Stud. Math. Found. 4 (2017), no. 2, 127–148. 10.1007/s40509-016-0088-4Suche in Google Scholar

[28] A. Shojaei-Fard, A measure theoretic perspective on the space of Feynman diagrams, Bol. Soc. Mat. Mex. (3) 24 (2018), no. 2, 507–533. 10.1007/s40590-017-0166-6Suche in Google Scholar

[29] A. Shojaei-Fard, Graphons and renormalization of large Feynman diagrams, Opuscula Math. 38 (2018), no. 3, 427–455. 10.7494/OpMath.2018.38.3.427Suche in Google Scholar

[30] A. Shojaei-Fard, Formal aspects of non-perturbative quantum field theory via an operator theoretic setting, Int. J. Geom. Methods Mod. Phys. 16 (2019), no. 12, Article ID 1950192. 10.1142/S0219887819501925Suche in Google Scholar

[31] A. Shojaei-Fard, Non-perturbative β-functions via Feynman graphons, Modern Phys. Lett. A 34 (2019), no. 14, Article ID 1950109. 10.1142/S0217732319501098Suche in Google Scholar

[32] A. Shojaei-Fard, The analytic evolution of Dyson–Schwinger equations via homomorphism densities, Math. Phys. Anal. Geom. 24 (2021), no. 2, Paper No. 18. 10.1007/s11040-021-09389-zSuche in Google Scholar

[33] A. Shojaei-Fard, The complexities of nonperturbative computations, Russ. J. Math. Phys. 28 (2021), no. 3, 358–376. 10.1134/S1061920821030092Suche in Google Scholar

[34] A. Shojaei-Fard, The dynamics of non-perturbative phases via Banach bundles, Nuclear Phys. B 969 (2021), Paper No. 115478. 10.1016/j.nuclphysb.2021.115478Suche in Google Scholar

[35] I. Tsutsui, Origin of anomalies in the path-integral formalism, Phys. Rev. D (3) 40 (1989), no. 10, 3543–3546. 10.1103/PhysRevD.40.3543Suche in Google Scholar

[36] W. D. van Suijlekom, The Hopf algebra of Feynman graphs in quantum electrodynamics, Lett. Math. Phys. 77 (2006), no. 3, 265–281. 10.1007/s11005-006-0092-4Suche in Google Scholar

[37] W. D. van Suijlekom, Renormalization of gauge fields: A Hopf algebra approach, Comm. Math. Phys. 276 (2007), no. 3, 773–798. 10.1007/s00220-007-0353-9Suche in Google Scholar

[38] S. Weinzierl, Introduction to Feynman integrals, Geometric and Topological Methods for Quantum Field Theory, Cambridge University, Cambridge (2013), 144–187. 10.1017/CBO9781139208642.005Suche in Google Scholar

[39] S. Weinzierl, Hopf algebras and Dyson–Schwinger equations, Front. Phys. 11 (2016), Article ID 111206. 10.1007/s11467-016-0562-9Suche in Google Scholar

Received: 2021-05-17
Revised: 2022-04-20
Published Online: 2022-06-30
Published in Print: 2022-09-01

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 4.2.2026 von https://www.degruyterbrill.com/document/doi/10.1515/forum-2021-0119/html
Button zum nach oben scrollen