Home Krull dimension for C*-algebras
Article
Licensed
Unlicensed Requires Authentication

Krull dimension for C*-algebras

  • Mohammad Rouzbehani ORCID logo EMAIL logo , Massoud Amini ORCID logo and Mohammad B. Asadi
Published/Copyright: July 23, 2022

Abstract

In this article, we introduce and study the notion of Krull dimension for C*-algebras. We show that every C*-algebra with Krull dimension contains an essential ideal that is a finite direct sum of critical ideals. We show that a C*-algebra with Krull dimension has finite-dimensional center, and conclude that every graph C*-algebra with Krull dimension has real rank zero, and is đ’Ș ∞ -stable in the purely infinite case. We also study the (weak) ideal property for critical C*-algebras.

MSC 2010: 46L05; 46L80

Communicated by Siegfried Echterhoff


Award Identifier / Grant number: 98029498

Award Identifier / Grant number: 99013953

Award Identifier / Grant number: 96430215

Funding statement: The first and third authors were supported by grants from INSF (Nos. 98029498, 99013953). The second author was partly supported by a grant from IPM (No. 96430215).

References

[1] G. Abrams and M. Tomforde, A class of C * -algebras that are prime but not primitive, MĂŒnster J. Math. 7 (2014), no. 2, 489–514. Search in Google Scholar

[2] P. Ara and M. Mathieu, Local Multipliers of C * -Algebras, Springer Monogr. Math., Springer, London, 2003. 10.1007/978-1-4471-0045-4Search in Google Scholar

[3] G. Aranda Pino, F. Perera and M. Siles Molina, Graph Algebras: Bridging the Gap Between Analysis and Algebra, University of MĂĄlaga, MĂĄlaga, Spain, 2007. Search in Google Scholar

[4] W. Beer, On Morita equivalence of nuclear C ∗ -algebras, J. Pure Appl. Algebra 26 (1982), no. 3, 249–267. 10.1016/0022-4049(82)90109-8Search in Google Scholar

[5] B. Blackadar, Operator Algebras. Theory of C * -Algebras and von Neumann Algebras, Encyclopaedia Math. Sci. 122, Springer, Berlin, 2006. 10.1007/3-540-28517-2Search in Google Scholar

[6] J. Bosa, J. Gabe, A. Sims and S. White, The nuclear dimension of đ’Ș ∞ -stable C ∗ -algebras, Adv. Math. 401 (2022), Paper No. 108250. 10.1016/j.aim.2022.108250Search in Google Scholar

[7] J. Cuntz, S. Echterhoff, X. Li and G. Yu, K-Theory for Group C * -Algebras and Semigroup C * -Algebras, Oberwolfach Semin. 47, BirkhÀuser/Springer, Cham, 2017. 10.1007/978-3-319-59915-1Search in Google Scholar

[8] J. Dixmier, C * -Algebras, North-Holland Math. Libr. 15, North-Holland, Amsterdam, 1977. Search in Google Scholar

[9] S. R. Eilers, G. Restorff, E. Ruiz and A. P. W. Sþrensen, Geometric classification of graph C * -algebras over finite graphs, Canad. J. Math. 70 (2018), no. 2, 294–353. 10.4153/CJM-2017-016-7Search in Google Scholar

[10] J. Gabe, A new proof of Kirchberg’s đ’Ș 2 -stable classification, J. Reine Angew. Math. 761 (2020), 247–289. 10.1515/crelle-2018-0010Search in Google Scholar

[11] I. Gogić, The local multiplier algebra of a C * -algebra with finite dimensional irreducible representations, J. Math. Anal. Appl. 408 (2013), no. 2, 789–794. 10.1016/j.jmaa.2013.06.036Search in Google Scholar

[12] K. R. Goodearl and R. B. Warfield, Jr., An Introduction to Noncommutative Noetherian Rings, London Math. Soc. Stud. Texts 16, Cambridge University, Cambridge, 1989. Search in Google Scholar

[13] R. Gordon and J. C. Robson, Krull dimension, Mem. Amer. Math. Soc. 133 (1973), 1–78. 10.1090/memo/0133Search in Google Scholar

[14] M. Hamana, Injective envelopes of C ∗ -algebras, J. Math. Soc. Japan 31 (1979), no. 1, 181–197. 10.2969/jmsj/03110181Search in Google Scholar

[15] M. Hamana, The centre of the regular monotone completion of a C ∗ -algebra, J. Lond. Math. Soc. (2) 26 (1982), no. 3, 522–530. 10.1112/jlms/s2-26.3.522Search in Google Scholar

[16] T. Hines and E. Walsberg, Nontrivially Noetherian C ∗ -algebras, Math. Scand. 111 (2012), no. 1, 135–146. 10.7146/math.scand.a-15219Search in Google Scholar

[17] J. H. Hong and W. SzymaƄski, Purely infinite Cuntz–Krieger algebras of directed graphs, Bull. Lond. Math. Soc. 35 (2003), no. 5, 689–696. 10.1112/S0024609303002364Search in Google Scholar

[18] E. Kirchberg, The classification of purely infinite C*-algebras using Kasparov’s theory, preprint. Search in Google Scholar

[19] E. Kirchberg and M. RĂžrdam, Infinite non-simple C * -algebras: Absorbing the Cuntz algebras đ’Ș ∞ , Adv. Math. 167 (2002), no. 2, 195–264. 10.1006/aima.2001.2041Search in Google Scholar

[20] J. C. McConnell and J. C. Robson, Noncommutative Noetherian Rings, Grad. Stud. Math. 30, American Mathematical Society, Providence, 2001. 10.1090/gsm/030Search in Google Scholar

[21] C. Pasnicu, Ideals generated by projections and inductive limit C * -algebras, Rocky Mountain J. Math. 31 (2001), no. 3, 1083–1095. 10.1216/rmjm/1020171681Search in Google Scholar

[22] C. Pasnicu and N. C. Phillips, Crossed products by spectrally free actions, J. Funct. Anal. 269 (2015), no. 4, 915–967. 10.1016/j.jfa.2015.04.020Search in Google Scholar

[23] C. Pasnicu and N. C. Phillips, The weak ideal property and topological dimension zero, Canad. J. Math. 69 (2017), no. 6, 1385–1421. 10.4153/CJM-2017-012-4Search in Google Scholar

[24] C. Pasnicu and M. Rþrdam, Tensor products of C ∗ -algebras with the ideal property, J. Funct. Anal. 177 (2000), no. 1, 130–137. 10.1006/jfan.2000.3630Search in Google Scholar

[25] G. Pisier, Tensor Products of C * -Agebras and Operator Spaces—the Connes–Kirchberg Problem, London Math. Soc. Stud. Texts 96, Cambridge University, Cambridge, 2020. 10.1017/9781108782081Search in Google Scholar

[26] M. Pourgholamhossein, M. Rouzbehani and M. Amini, Chain conditions for C * -algebras coming from Hilbert C * -modules, Acta Math. Sci. Ser. B (Engl. Ed.) 38 (2018), no. 4, 1163–1173. 10.1016/S0252-9602(18)30806-3Search in Google Scholar

[27] M. Pourgholamhossein, M. Rouzbehani and M. Amini, On finiteness properties of Noetherian (Artinian) C * -algebras, Linear Multilinear Algebra 70 (2022), no. 3, 419–430. 10.1080/03081087.2020.1733458Search in Google Scholar

[28] I. Raeburn and D. P. Williams, Morita Equivalence and Continuous-Trace C * -Algebras, Math. Surveys Monogr. 60, American Mathematical Society, Providence, 1998. 10.1090/surv/060Search in Google Scholar

[29] M. Rþrdam, Classification of nuclear, simple C * -algebras, Entropy in Operator Algebras, Encyclopaedia Math. Sci. 126, Springer, Berlin (2002), 1–145. 10.1007/978-3-662-04825-2_1Search in Google Scholar

[30] J. Rosenberg, Appendix to: “Crossed products of UHF algebras by product type actions”, Duke Math. J. 46 (1979), no. 1, 25–26. 10.1215/S0012-7094-79-04602-7Search in Google Scholar

[31] M. Rouzbehani, M. Pourgholamhossein and M. Amini, Chain conditions for graph C * -algebras, Forum Math. 32 (2020), no. 2, 491–500. 10.1515/forum-2019-0170Search in Google Scholar

[32] K. SaitĂŽ and J. D. M. Wright, Monotone Complete C * -Algebras and Generic Dynamics, Springer Monogr. Math., Springer, London, 2015. 10.1007/978-1-4471-6775-4Search in Google Scholar

[33] A. Sierakowski, The ideal structure of reduced crossed products, MĂŒnster J. Math. 3 (2010), 237–261. Search in Google Scholar

[34] A. M. Sinclair and A. W. Tullo, Noetherian Banach algebras are finite dimensional, Math. Ann. 211 (1974), 151–153. 10.1007/BF01344169Search in Google Scholar

[35] N. E. Wegge-Olsen, K-Theory and C * -Algebras, Oxford University, New York, 1993. Search in Google Scholar

[36] D. P. Williams, Crossed Products of C ∗ -Algebras, Math. Surveys Monogr. 134, American Mathematical Society, Providence, 2007. 10.1090/surv/134Search in Google Scholar

[37] W. Winter and J. Zacharias, The nuclear dimension of C ∗ -algebras, Adv. Math. 224 (2010), no. 2, 461–498. 10.1016/j.aim.2009.12.005Search in Google Scholar

[38] S. Zhang, K 1 -groups, quasidiagonality, and interpolation by multiplier projections, Trans. Amer. Math. Soc. 325 (1991), no. 2, 793–818. 10.1090/S0002-9947-1991-0998130-8Search in Google Scholar

Received: 2021-11-30
Revised: 2022-05-25
Published Online: 2022-07-23
Published in Print: 2022-09-01

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 18.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/forum-2021-0304/html
Scroll to top button