Startseite Spectrality of self-similar measures with product-form digits
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Spectrality of self-similar measures with product-form digits

  • Juan Su , Sha Wu und Ming-Liang Chen EMAIL logo
Veröffentlicht/Copyright: 29. Juni 2022

Abstract

A Borel probability measure μ on is called a spectral measure if it has an exponential orthonormal basis for L 2 ( μ ) . In this paper, we consider the spectrality of the self-similar measure μ ρ , D generated by 0 < ρ < 1 and the product-form digit set

D = N p 0 L 0 { 0 , 1 , , N - 1 } N p 1 L 1 { 0 , 1 , , N - 1 } N p s L s { 0 , 1 , , N - 1 } ,

where N 2 is a prime number, 0 p 0 < p 1 < < p s and gcd ( L i , N ) = 1 for all 0 i s . We show that μ ρ , D is a spectral measure if and only if ρ - 1 = N q M and p i p j ( mod q ) for all 0 i j s , where gcd ( M , N ) = 1 .


Communicated by Christopher D. Sogge


Award Identifier / Grant number: 12071125

Award Identifier / Grant number: 11971500

Award Identifier / Grant number: 12171055

Award Identifier / Grant number: 2019JJ20012

Funding statement: This research is supported in part by the NNSF of China (Grant nos. 12071125, 11971500 and 12171055) and the Hunan Provincial NSF (Grant no. 2019JJ20012).

Acknowledgements

The authors would like to thank the referee for his/her many valuable suggestions.

References

[1] L.-X. An and C. Wang, On self-similar spectral measures, J. Funct. Anal. 280 (2021), no. 3, 108821. 10.1016/j.jfa.2020.108821Suche in Google Scholar

[2] M.-L. Chen, J.-C. Liu and X.-Y. Wang, Spectrality of a class of self-affine measures on 2 , Nonlinearity 34 (2021), no. 11, 7446–7469. 10.1088/1361-6544/ac2493Suche in Google Scholar

[3] X.-R. Dai, When does a Bernoulli convolution admit a spectrum?, Adv. Math. 231 (2012), no. 3–4, 1681–1693. 10.1016/j.aim.2012.06.026Suche in Google Scholar

[4] X.-R. Dai, X.-G. He and C.-K. Lai, Spectral property of Cantor measures with consecutive digits, Adv. Math. 242 (2013), 187–208. 10.1016/j.aim.2013.04.016Suche in Google Scholar

[5] X.-R. Dai, X.-G. He and K.-S. Lau, On spectral N-Bernoulli measures, Adv. Math. 259 (2014), 511–531. 10.1016/j.aim.2014.03.026Suche in Google Scholar

[6] Q.-R. Deng and K.-S. Lau, Sierpinski-type spectral self-similar measures, J. Funct. Anal. 269 (2015), no. 5, 1310–1326. 10.1016/j.jfa.2015.06.013Suche in Google Scholar

[7] D. E. Dutkay, J. Haussermann and C.-K. Lai, Hadamard triples generate self-affine spectral measures, Trans. Amer. Math. Soc. 371 (2019), no. 2, 1439–1481. 10.1090/tran/7325Suche in Google Scholar

[8] D. E. Dutkay and P. E. T. Jorgensen, Analysis of orthogonality and of orbits in affine iterated function systems, Math. Z. 256 (2007), no. 4, 801–823. 10.1007/s00209-007-0104-9Suche in Google Scholar

[9] B. Farkas, M. Matolcsi and P. Móra, On Fuglede’s conjecture and the existence of universal spectra, J. Fourier Anal. Appl. 12 (2006), no. 5, 483–494. 10.1007/s00041-005-5069-7Suche in Google Scholar

[10] X.-Y. Fu, X.-G. He and K.-S. Lau, Spectrality of self-similar tiles, Constr. Approx. 42 (2015), no. 3, 519–541. 10.1007/s00365-015-9306-2Suche in Google Scholar

[11] Y.-S. Fu, X.-G. He and Z.-X. Wen, Spectra of Bernoulli convolutions and random convolutions, J. Math. Pures Appl. (9) 116 (2018), 105–131. 10.1016/j.matpur.2018.06.002Suche in Google Scholar

[12] B. Fuglede, Commuting self-adjoint partial differential operators and a group theoretic problem, J. Funct. Anal. 16 (1974), 101–121. 10.1016/0022-1236(74)90072-XSuche in Google Scholar

[13] X.-G. He, C.-K. Lai and K.-S. Lau, Exponential spectra in L 2 ( μ ) , Appl. Comput. Harmon. Anal. 34 (2013), no. 3, 327–338. 10.1016/j.acha.2012.05.003Suche in Google Scholar

[14] T.-Y. Hu and K.-S. Lau, Spectral property of the Bernoulli convolutions, Adv. Math. 219 (2008), no. 2, 554–567. 10.1016/j.aim.2008.05.004Suche in Google Scholar

[15] J. E. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J. 30 (1981), no. 5, 713–747. 10.1512/iumj.1981.30.30055Suche in Google Scholar

[16] P. E. T. Jorgensen and S. Pedersen, Dense analytic subspaces in fractal L 2 -spaces, J. Anal. Math. 75 (1998), 185–228. 10.1007/BF02788699Suche in Google Scholar

[17] M. N. Kolountzakis and M. Matolcsi, Tiles with no spectra, Forum Math. 18 (2006), no. 3, 519–528. 10.1515/FORUM.2006.026Suche in Google Scholar

[18] I. Łaba and Y. Wang, On spectral Cantor measures, J. Funct. Anal. 193 (2002), no. 2, 409–420. 10.1006/jfan.2001.3941Suche in Google Scholar

[19] J. C. Lagarias and Y. Wang, Spectral sets and factorizations of finite abelian groups, J. Funct. Anal. 145 (1997), no. 1, 73–98. 10.1006/jfan.1996.3008Suche in Google Scholar

[20] C.-K. Lai, K.-S. Lau and H. Rao, Spectral structure of digit sets of self-similar tiles on 1 , Trans. Amer. Math. Soc. 365 (2013), no. 7, 3831–3850. 10.1090/S0002-9947-2013-05787-XSuche in Google Scholar

[21] C.-K. Lai, K.-S. Lau and H. Rao, Classification of tile digit sets as product-forms, Trans. Amer. Math. Soc. 369 (2017), no. 1, 623–644. 10.1090/tran/6703Suche in Google Scholar

[22] J.-L. Li, Spectra of a class of self-affine measures, J. Funct. Anal. 260 (2011), no. 4, 1086–1095. 10.1016/j.jfa.2010.12.001Suche in Google Scholar

[23] J.-C. Liu, R.-G. Peng and H.-H. Wu, Spectral properties of self-similar measures with product-form digit sets, J. Math. Anal. Appl. 473 (2019), no. 1, 479–489. 10.1016/j.jmaa.2018.12.062Suche in Google Scholar

[24] J.-C. Liu, Y. Zhang, Z.-Y. Wang and M.-L. Chen, Spectrality of generalized Sierpinski-type self-affine measures, Appl. Comput. Harmon. Anal. 55 (2021), 129–148. 10.1016/j.acha.2021.05.001Suche in Google Scholar

[25] S. Pedersen and Y. Wang, Universal spectra, universal tiling sets and the spectral set conjecture, Math. Scand. 88 (2001), no. 2, 246–256. 10.7146/math.scand.a-14325Suche in Google Scholar

[26] T. Tao, Fuglede’s conjecture is false in 5 and higher dimensions, Math. Res. Lett. 11 (2004), no. 2–3, 251–258. 10.4310/MRL.2004.v11.n2.a8Suche in Google Scholar

Received: 2022-02-27
Revised: 2022-03-31
Published Online: 2022-06-29
Published in Print: 2022-09-01

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 15.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/forum-2022-0069/html
Button zum nach oben scrollen