Startseite Mathematik The role of gentle algebras in higher homological algebra
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

The role of gentle algebras in higher homological algebra

  • Johanne Haugland ORCID logo , Karin M. Jacobsen ORCID logo EMAIL logo und Sibylle Schroll ORCID logo
Veröffentlicht/Copyright: 23. Juli 2022

Abstract

We investigate the role of gentle algebras in higher homological algebra. In the first part of the paper, we show that if the module category of a gentle algebra Λ contains a d-cluster tilting subcategory for some d 2 , then Λ is a radical square zero Nakayama algebra. This gives a complete classification of weakly d-representation finite gentle algebras. In the second part, we use a geometric model of the derived category to prove a similar result in the triangulated setup. More precisely, we show that if 𝒟 b ( Λ ) contains a d-cluster tilting subcategory that is closed under [ d ] , then Λ is derived equivalent to an algebra of Dynkin type A. Furthermore, our approach gives a geometric characterization of all d-cluster tilting subcategories of 𝒟 b ( Λ ) that are closed under [ d ] .

MSC 2010: 18E30; 16E35; 16G10

Communicated by Jan Frahm


Funding source: Norges Forskningsråd

Award Identifier / Grant number: 295920

Award Identifier / Grant number: 301046

Award Identifier / Grant number: EP/R014604/1

Funding statement: This work has been partially supported by project IDUN, funded through the Norwegian Research Council (295920). The second author was partially funded by the Norwegian Research Council via the project “Higher homological algebra and tilting theory” (301046). The third author would like to thank the Isaac Newton Institute for Mathematical Sciences, Cambridge, for support and hospitality during the program Cluster Algebras and Representation Theory, where work on this paper was undertaken. This work was supported by EPSRC grant no. EP/R014604/1.

Acknowledgements

Parts of this work were carried out while the first two authors participated in the junior trimester program “New Trends in Representation Theory” at the Hausdorff Research Institute for Mathematics in Bonn. They thank the institute for excellent working conditions. They would also like to thank Jenny August, Sondre Kvamme, Yann Palu and Hipolito Treffinger for helpful discussions. We thank the anonymous referee for their helpful comments and suggestions.

References

[1] C. Amiot, O. Iyama and I. Reiten, Stable categories of Cohen–Macaulay modules and cluster categories, Amer. J. Math. 137 (2015), no. 3, 813–857. 10.1353/ajm.2015.0019Suche in Google Scholar

[2] K. K. Arnesen, R. Laking and D. Pauksztello, Morphisms between indecomposable complexes in the bounded derived category of a gentle algebra, J. Algebra 467 (2016), 1–46. 10.1016/j.jalgebra.2016.07.019Suche in Google Scholar

[3] I. Assem and D. Happel, Generalized tilted algebras of type A n , Comm. Algebra 9 (1981), no. 20, 2101–2125. 10.1080/00927878108822697Suche in Google Scholar

[4] I. Assem and A. Skowroński, Iterated tilted algebras of type 𝐀 ~ n , Math. Z. 195 (1987), no. 2, 269–290. 10.1007/BF01166463Suche in Google Scholar

[5] K. Baur and R. Coelho Simões, A geometric model for the module category of a gentle algebra, Int. Math. Res. Not. IMRN 2021 (2021), no. 15, 11357–11392. 10.1093/imrn/rnz150Suche in Google Scholar

[6] V. Bekkert and H. A. Merklen, Indecomposables in derived categories of gentle algebras, Algebr. Represent. Theory 6 (2003), no. 3, 285–302. 10.1081/AGB-120021885Suche in Google Scholar

[7] T. Brüstle, G. Douville, K. Mousavand, H. Thomas and E. Yıldırım, On the combinatorics of gentle algebras, Canad. J. Math. 72 (2020), no. 6, 1551–1580. 10.4153/S0008414X19000397Suche in Google Scholar

[8] M. C. R. Butler and C. M. Ringel, Auslander–Reiten sequences with few middle terms and applications to string algebras, Comm. Algebra 15 (1987), no. 1–2, 145–179. 10.1080/00927878708823416Suche in Google Scholar

[9] I. Çanakçı, D. Pauksztello and S. Schroll, On extensions for gentle algebras, Canad. J. Math. 73 (2021), no. 1, 249–292. 10.4153/S0008414X2000005XSuche in Google Scholar

[10] E. Darpö and O. Iyama, d-representation-finite self-injective algebras, Adv. Math. 362 (2020), Article ID 106932. 10.1016/j.aim.2019.106932Suche in Google Scholar

[11] E. Darpö and T. Kringeland, Classification of the d-representation-finite trivial extensions of quiver algebras, preprint (2021), https://arxiv.org/abs/2103.15380. Suche in Google Scholar

[12] T. Dyckerhoff, G. Jasso and Y. Lekili, The symplectic geometry of higher Auslander algebras: Symmetric products of disks, Forum Math. Sigma 9 (2021), Paper No. e10. 10.1017/fms.2021.2Suche in Google Scholar

[13] R. Ebrahimi and A. Nasr-Isfahani, Higher Auslander’s formula, Int. Math. Res. Not. IMRN 2021 (2021), 10.1093/imrn/rnab219. 10.1093/imrn/rnab219Suche in Google Scholar

[14] D. E. Evans and M. Pugh, The Nakayama automorphism of the almost Calabi–Yau algebras associated to S U ( 3 ) modular invariants, Comm. Math. Phys. 312 (2012), no. 1, 179–222. 10.1007/s00220-011-1389-4Suche in Google Scholar

[15] C. Geiss, B. Keller and S. Oppermann, n-angulated categories, J. Reine Angew. Math. 675 (2013), 101–120. 10.1515/CRELLE.2011.177Suche in Google Scholar

[16] F. Haiden, L. Katzarkov and M. Kontsevich, Flat surfaces and stability structures, Publ. Math. Inst. Hautes Études Sci. 126 (2017), 247–318. 10.1007/s10240-017-0095-ySuche in Google Scholar

[17] D. Happel, Auslander–Reiten triangles in derived categories of finite-dimensional algebras, Proc. Amer. Math. Soc. 112 (1991), no. 3, 641–648. 10.1090/S0002-9939-1991-1045137-6Suche in Google Scholar

[18] J. Haugland, The Grothendieck group of an n-exangulated category, Appl. Categ. Structures 29 (2021), no. 3, 431–446. 10.1007/s10485-020-09622-wSuche in Google Scholar

[19] J. Haugland and M. H. Sandøy, Higher Koszul duality and connections with n-hereditary algebras, preprint (2021), https://arxiv.org/abs/2101.12743. Suche in Google Scholar

[20] M. Herschend and O. Iyama, n-representation-finite algebras and twisted fractionally Calabi–Yau algebras, Bull. Lond. Math. Soc. 43 (2011), no. 3, 449–466. 10.1112/blms/bdq101Suche in Google Scholar

[21] M. Herschend and O. Iyama, Selfinjective quivers with potential and 2-representation-finite algebras, Compos. Math. 147 (2011), no. 6, 1885–1920. 10.1112/S0010437X11005367Suche in Google Scholar

[22] M. Herschend, O. Iyama, H. Minamoto and S. Oppermann, Representation theory of Geigle–Lenzing complete intersections, preprint (2014), https://arxiv.org/abs/1409.0668; to appear in Mem. Amer. Math. Soc. Suche in Google Scholar

[23] M. Herschend, O. Iyama and S. Oppermann, n-representation infinite algebras, Adv. Math. 252 (2014), 292–342. 10.1016/j.aim.2013.09.023Suche in Google Scholar

[24] M. Herschend, P. Jørgensen and L. Vaso, Wide subcategories of d-cluster tilting subcategories, Trans. Amer. Math. Soc. 373 (2020), no. 4, 2281–2309. 10.1090/tran/8051Suche in Google Scholar

[25] M. Herschend, Y. Liu and H. Nakaoka, n-exangulated categories (I): Definitions and fundamental properties, J. Algebra 570 (2021), 531–586. 10.1016/j.jalgebra.2020.11.017Suche in Google Scholar

[26] O. Iyama, Auslander correspondence, Adv. Math. 210 (2007), no. 1, 51–82. 10.1016/j.aim.2006.06.003Suche in Google Scholar

[27] O. Iyama, Higher-dimensional Auslander–Reiten theory on maximal orthogonal subcategories, Adv. Math. 210 (2007), no. 1, 22–50. 10.1016/j.aim.2006.06.002Suche in Google Scholar

[28] O. Iyama, Auslander–Reiten theory revisited, Trends in Representation Theory of Algebras and Related Topics, EMS Ser. Congr. Rep., European Mathematical Society, Zürich (2008), 349–397. 10.4171/062-1/8Suche in Google Scholar

[29] O. Iyama, Cluster tilting for higher Auslander algebras, Adv. Math. 226 (2011), no. 1, 1–61. 10.1016/j.aim.2010.03.004Suche in Google Scholar

[30] O. Iyama and S. Oppermann, n-representation-finite algebras and n-APR tilting, Trans. Amer. Math. Soc. 363 (2011), no. 12, 6575–6614. 10.1090/S0002-9947-2011-05312-2Suche in Google Scholar

[31] O. Iyama and S. Oppermann, Stable categories of higher preprojective algebras, Adv. Math. 244 (2013), 23–68. 10.1016/j.aim.2013.03.013Suche in Google Scholar

[32] O. Iyama and M. Wemyss, Maximal modifications and Auslander–Reiten duality for non-isolated singularities, Invent. Math. 197 (2014), no. 3, 521–586. 10.1007/s00222-013-0491-ySuche in Google Scholar

[33] O. Iyama and Y. Yoshino, Mutation in triangulated categories and rigid Cohen–Macaulay modules, Invent. Math. 172 (2008), no. 1, 117–168. 10.1007/s00222-007-0096-4Suche in Google Scholar

[34] K. M. Jacobsen and P. Jørgensen, d-abelian quotients of ( d + 2 ) -angulated categories, J. Algebra 521 (2019), 114–136. 10.1016/j.jalgebra.2018.11.019Suche in Google Scholar

[35] K. M. Jacobsen and P. Jørgensen, Maximal τ d -rigid pairs, J. Algebra 546 (2020), 119–134. 10.1016/j.jalgebra.2019.10.046Suche in Google Scholar

[36] G. Jasso, n-abelian and n-exact categories, Math. Z. 283 (2016), no. 3–4, 703–759. 10.1007/s00209-016-1619-8Suche in Google Scholar

[37] G. Jasso and J. Külshammer, Higher Nakayama algebras I: Construction, Adv. Math. 351 (2019), 1139–1200. 10.1016/j.aim.2019.05.026Suche in Google Scholar

[38] G. Jasso and S. Kvamme, An introduction to higher Auslander–Reiten theory, Bull. Lond. Math. Soc. 51 (2019), no. 1, 1–24. 10.1112/blms.12204Suche in Google Scholar

[39] P. Jørgensen, Torsion classes and t-structures in higher homological algebra, Int. Math. Res. Not. IMRN 2016 (2016), no. 13, 3880–3905. 10.1093/imrn/rnv265Suche in Google Scholar

[40] P. Jørgensen, Tropical friezes and the index in higher homological algebra, Math. Proc. Cambridge Philos. Soc. 171 (2021), no. 1, 23–49. 10.1017/S0305004120000031Suche in Google Scholar

[41] B. Keller and I. Reiten, Cluster-tilted algebras are Gorenstein and stably Calabi–Yau, Adv. Math. 211 (2007), no. 1, 123–151. 10.1016/j.aim.2006.07.013Suche in Google Scholar

[42] S. Kvamme, Axiomatizing subcategories of Abelian categories, J. Pure Appl. Algebra 226 (2022), no. 4, Paper No. 106862. 10.1016/j.jpaa.2021.106862Suche in Google Scholar

[43] Y. Lekili and A. Polishchuk, Derived equivalences of gentle algebras via Fukaya categories, Math. Ann. 376 (2020), no. 1–2, 187–225. 10.1007/s00208-019-01894-5Suche in Google Scholar

[44] Y. Mizuno, A Gabriel-type theorem for cluster tilting, Proc. Lond. Math. Soc. (3) 108 (2014), no. 4, 836–868. 10.1112/plms/pdt046Suche in Google Scholar

[45] S. Opper, P.-G. Plamondon and S. Schroll, A geometric model for the derived category of gentle algebras, preprint (2018), https://arxiv.org/abs/1801.09659. Suche in Google Scholar

[46] S. Oppermann, C. Psaroudakis and T. Stai, Partial serre duality and cocompact objects, preprint (2021), https://arxiv.org/abs/2104.12498. Suche in Google Scholar

[47] S. Oppermann and H. Thomas, Higher-dimensional cluster combinatorics and representation theory, J. Eur. Math. Soc. (JEMS) 14 (2012), no. 6, 1679–1737. 10.4171/JEMS/345Suche in Google Scholar

[48] Y. Palu, V. Pilaud and P.-G. Plamondon, Non-kissing and non-crossing complexes for locally gentle algebras, J. Comb. Algebra 3 (2019), no. 4, 401–438. 10.4171/JCA/35Suche in Google Scholar

[49] J. Reid, Indecomposable objects determined by their index in higher homological algebra, Proc. Amer. Math. Soc. 148 (2020), no. 6, 2331–2343. 10.1090/proc/14924Suche in Google Scholar

[50] M. H. Sandøy and L.-P. Thibault, Classification results for n-hereditary monomial algebras, preprint (2021), https://arxiv.org/abs/2101.12746. Suche in Google Scholar

[51] J. Schröer, Modules without self-extensions over gentle algebras, J. Algebra 216 (1999), no. 1, 178–189. 10.1006/jabr.1998.7696Suche in Google Scholar

[52] S. Schroll, Trivial extensions of gentle algebras and Brauer graph algebras, J. Algebra 444 (2015), 183–200. 10.1016/j.jalgebra.2015.07.037Suche in Google Scholar

[53] S. Schroll, Brauer graph algebras: a survey on Brauer graph algebras, associated gentle algebras and their connections to cluster theory, Homological Methods, Representation Theory, and Cluster Algebras, CRM Short Courses, Springer, Cham (2018), 177–223. 10.1007/978-3-319-74585-5_6Suche in Google Scholar

[54] D. Simson and A. Skowroński, Elements of the Representation Theory of Associative Algebras. Vol. 1. Techniques of Representation Theory, London Math. Soc. Stud. Texts 65, Cambridge University, Cambridge, 2006. 10.1017/CBO9780511614309Suche in Google Scholar

[55] L. Vaso, n-cluster tilting subcategories of representation-directed algebras, J. Pure Appl. Algebra 223 (2019), no. 5, 2101–2122. 10.1016/j.jpaa.2018.07.010Suche in Google Scholar

[56] L. Vaso, n-cluster tilting subcategories for radical square zero algebras, preprint (2021), https://arxiv.org/abs/2105.05830. 10.1016/j.jpaa.2022.107157Suche in Google Scholar

[57] N. J. Williams, New interpretations of the higher Stasheff–Tamari orders, preprint (2020), https://arxiv.org/abs/2007.12664. 10.1016/j.aim.2022.108552Suche in Google Scholar

Received: 2021-12-06
Revised: 2022-04-22
Published Online: 2022-07-23
Published in Print: 2022-09-01

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 5.2.2026 von https://www.degruyterbrill.com/document/doi/10.1515/forum-2021-0311/html
Button zum nach oben scrollen