Startseite L p boundedness for a maximal singular integral operator
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

L p boundedness for a maximal singular integral operator

  • Xiangxing Tao und Guoen Hu EMAIL logo
Veröffentlicht/Copyright: 29. Juni 2022

Abstract

Let Ω be homogeneous of degree zero and have vanishing moment of order one, let A be a function on d such that A BMO ( d ) , and let T Ω , A be the singular integral operator defined by

T Ω , A f ( x ) = p . v . d Ω ( x - y ) | x - y | d + 1 ( A ( x ) - A ( y ) - A ( y ) ( x - y ) ) f ( y ) 𝑑 y .

In this paper, the authors prove that if Ω L ( log L ) 2 ( S d - 1 ) , then the maximal singular integral operator associated to T Ω , A is bounded on L p ( d ) for all p ( 1 , ) .

MSC 2010: 42B20

Communicated by Christopher D. Sogge


Award Identifier / Grant number: 11771399

Award Identifier / Grant number: 11871108

Funding statement: The research of the first author was supported by the NNSF of China (No. 11771399), and the research of the second (corresponding) author was supported by the NNSF of China (No. 11871108).

Acknowledgements

The authors would like to express their sincerely thanks to the referee for his/her valuable remarks and suggestions, which made this paper more readable.

References

[1] J. Alvarez, R. J. Babgy, D. Kurtz and C. Pérez, Weighted estimates for commutators of linear operators, Studia Math. 104 (1993), 195–209. 10.4064/sm-104-2-195-209Suche in Google Scholar

[2] J. Cohen, A sharp estimate for a multilinear singular integral on d , Indiana Univ. Math. J. 30 (1981), 693–702. 10.1512/iumj.1981.30.30053Suche in Google Scholar

[3] J. Duoandikoetxea, Extrapolation of weights revisited: New proofs and sharp bounds, J. Funct. Anal. 260 (2011), 1886–1901. 10.1016/j.jfa.2010.12.015Suche in Google Scholar

[4] J. Duoandikoetxea and J. L. Rubio de Francia, Maximal and singular integral operators via Fourier transform estimates, Invent. Math. 84 (1986), 541–561. 10.1007/BF01388746Suche in Google Scholar

[5] L. Grafakos, Modern Fourier Analysis, 2nd ed., Grad. Texts in Math. 250, Springer, New York, 2008. 10.1007/978-0-387-09434-2Suche in Google Scholar

[6] Y. Han and E. T. Sawyer, Para-accretive functions, the weak boundedness properties and the Tb theorem, Rev. Mat. Iberoam. 6 (1990), 17–41. 10.4171/RMI/93Suche in Google Scholar

[7] S. Hofmann, Weighted inequalities for commutators of rough singular integrals, Indiana Univ. Math. J. 39 (1990), 1275–1304. 10.1512/iumj.1990.39.39057Suche in Google Scholar

[8] S. Hofmann, On certain non-standard Calderón–Zygmund operators, Studia Math. 109 (1994), 105–131. 10.4064/sm-109-2-105-131Suche in Google Scholar

[9] G. Hu, L p ( n ) boundedness for the commutator of a homogeneous singular integral, Studia Math. 154 (2003), 13–47. 10.4064/sm154-1-2Suche in Google Scholar

[10] G. Hu, Weighted vector-valued estimates for a non-standard Calderón–Zygmund operator, Nonlinear Anal. 165 (2017), 143–162. 10.1016/j.na.2017.09.013Suche in Google Scholar

[11] G. Hu, X. Tao, Z. Wang and Q. Xue, On the boundedness of non-standard rough singular integral operators, preprint (2022), https://arxiv.org/abs/2203.05249. Suche in Google Scholar

[12] G. Hu and D. Yang, Sharp function estimates and weighted norm inequalities for multilinear singular integral operators, Bull. Lond. Math. Soc. 35 (2003), 759–769. 10.1112/S0024609303002376Suche in Google Scholar

[13] A. K. Lerner and S. Ombrosi, Some remarks on the pointwise sparse domination, J. Geom. Anal. 30 (2020), 1011–1027. 10.1007/s12220-019-00172-9Suche in Google Scholar

[14] M. Rao and Z. Ren, Theory of Orlicz Spaces, Monogr. Textb. Pure Appl. Math. 146, Marcel Dekker, New York, 1991. Suche in Google Scholar

Received: 2022-01-25
Revised: 2022-04-15
Published Online: 2022-06-29
Published in Print: 2022-09-01

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 12.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/forum-2022-0034/html
Button zum nach oben scrollen