Startseite Mathematik Reverse Stein–Weiss, Hardy–Littlewood–Sobolev, Hardy, Sobolev and Caffarelli–Kohn–Nirenberg inequalities on homogeneous groups
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Reverse Stein–Weiss, Hardy–Littlewood–Sobolev, Hardy, Sobolev and Caffarelli–Kohn–Nirenberg inequalities on homogeneous groups

  • Aidyn Kassymov EMAIL logo , Michael Ruzhansky und Durvudkhan Suragan ORCID logo
Veröffentlicht/Copyright: 23. Juli 2022

Abstract

In this note, we prove the reverse Stein–Weiss inequality on general homogeneous Lie groups. The results obtained extend previously known inequalities. Special properties of homogeneous norms and the reverse integral Hardy inequality play key roles in our proofs. Also, we prove reverse Hardy, Hardy–Littlewood–Sobolev, L p -Sobolev and L p -Caffarelli–Kohn–Nirenberg inequalities on homogeneous Lie groups.

MSC 2010: 22E30; 43A80

Communicated by Jan Frahm


Award Identifier / Grant number: AP09258745

Award Identifier / Grant number: 091019CRP2120

Award Identifier / Grant number: EP/R003025/1

Funding statement: The authors were also supported in parts by Science Committee of the MES RK (Grant number AP09258745), Nazarbayev University Program 091019CRP2120, the FWO Odysseus Project G.0H94.18N, and by the Methusalem programme of the Ghent University Special Research Fund (BOF) (Grant number 01M01021), and EPSRC Grant EP/R003025/1.

References

[1] R. A. Adams and J. J. F. Fournier, Sobolev Spaces, Pure Appl. Math. (Amsterdam) 140, Elsevier/Academic, Amsterdam, 2003. Suche in Google Scholar

[2] L. Caffarelli, R. Kohn and L. Nirenberg, First order interpolation inequalities with weights, Compos. Math. 53 (1984), no. 3, 259–275. Suche in Google Scholar

[3] J. A. Carrillo, M. G. Delgadino, J. Dolbeault, R. L. Frank and F. Hoffmann, Reverse Hardy–Littlewood–Sobolev inequalities, J. Math. Pures Appl. (9) 132 (2019), 133–165. 10.1016/j.matpur.2019.09.001Suche in Google Scholar

[4] L. Chen, Z. Liu, G. Lu and C. Tao, Reverse Stein–Weiss inequalities and existence of their extremal functions, Trans. Amer. Math. Soc. 370 (2018), no. 12, 8429–8450. 10.1090/tran/7273Suche in Google Scholar

[5] L. Chen, G. Lu and C. Tao, Reverse Stein–Weiss inequalities on the upper half space and the existence of their extremals, Adv. Nonlinear Stud. 19 (2019), no. 3, 475–494. 10.1515/ans-2018-2038Suche in Google Scholar

[6] P. Ciatti, M. G. Cowling and F. Ricci, Hardy and uncertainty inequalities on stratified Lie groups, Adv. Math. 277 (2015), 365–387. 10.1016/j.aim.2014.12.040Suche in Google Scholar

[7] R. R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia Math. 51 (1974), 241–250. 10.4064/sm-51-3-241-250Suche in Google Scholar

[8] L. D’Ambrosio, Hardy-type inequalities related to degenerate elliptic differential operators, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 4 (2005), no. 3, 451–486. 10.2422/2036-2145.2005.3.04Suche in Google Scholar

[9] D. Danielli, N. Garofalo and N. C. Phuc, Hardy–Sobolev type inequalities with sharp constants in Carnot–Carathéodory spaces, Potential Anal. 34 (2011), no. 3, 223–242. 10.1007/s11118-010-9190-0Suche in Google Scholar

[10] J. Dou, Weighted Hardy–Littlewood–Sobolev inequalities on the upper half space, Commun. Contemp. Math. 18 (2016), no. 5, Article ID 1550067. 10.1142/S0219199715500674Suche in Google Scholar

[11] J. Dou and M. Zhu, Reversed Hardy–Littewood–Sobolev inequality, Int. Math. Res. Not. IMRN 2015 (2015), no. 19, 9696–9726. 10.1093/imrn/rnu241Suche in Google Scholar

[12] C. Fefferman and B. Muckenhoupt, Two nonequivalent conditions for weight functions, Proc. Amer. Math. Soc. 45 (1974), 99–104. 10.1090/S0002-9939-1974-0360952-XSuche in Google Scholar

[13] V. Fischer and M. Ruzhansky, Quantization on Nilpotent Lie Groups, Progr. Math. 314, Birkhäuser, Cham, 2016. 10.1007/978-3-319-29558-9Suche in Google Scholar

[14] G. B. Folland and E. M. Stein, Estimates for the ¯ b complex and analysis on the Heisenberg group, Comm. Pure Appl. Math. 27 (1974), 429–522. 10.1002/cpa.3160270403Suche in Google Scholar

[15] G. B. Folland and E. M. Stein, Hardy Spaces on Homogeneous Groups, Math. Notes 28, Princeton University, Princeton, 1982. 10.1515/9780691222455Suche in Google Scholar

[16] R. L. Frank and E. H. Lieb, Sharp constants in several inequalities on the Heisenberg group, Ann. of Math. (2) 176 (2012), no. 1, 349–381. 10.4007/annals.2012.176.1.6Suche in Google Scholar

[17] N. Garofalo and E. Lanconelli, Frequency functions on the Heisenberg group, the uncertainty principle and unique continuation, Ann. Inst. Fourier (Grenoble) 40 (1990), no. 2, 313–356. 10.5802/aif.1215Suche in Google Scholar

[18] V. S. Guliyev, R. C. Mustafayev and A. Serbetci, Stein–Weiss inequalities for the fractional integral operators in Carnot groups and applications, Complex Var. Elliptic Equ. 55 (2010), no. 8–10, 847–863. 10.1080/17476930902999074Suche in Google Scholar

[19] X. Han, G. Lu and J. Zhu, Hardy–Littlewood–Sobolev and Stein–Weiss inequalities and integral systems on the Heisenberg group, Nonlinear Anal. 75 (2012), no. 11, 4296–4314. 10.1016/j.na.2012.03.017Suche in Google Scholar

[20] G. H. Hardy and J. E. Littlewood, Some properties of fractional integrals. I, Math. Z. 27 (1928), no. 1, 565–606. 10.1007/BF01171116Suche in Google Scholar

[21] M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, A. Laptev and J. Tidblom, Many-particle Hardy inequalities, J. Lond. Math. Soc. (2) 77 (2008), no. 1, 99–114. 10.1112/jlms/jdm091Suche in Google Scholar

[22] T. Hoffmann-Ostenhof and A. Laptev, Hardy inequalities with homogeneous weights, J. Funct. Anal. 268 (2015), no. 11, 3278–3289. 10.1016/j.jfa.2015.03.016Suche in Google Scholar

[23] A. Kassymov, M. Ruzhansky and D. Suragan, Hardy–Littlewood–Sobolev and Stein–Weiss inequalities on homogeneous Lie groups, Integral Transforms Spec. Funct. 30 (2019), no. 8, 643–655. 10.1080/10652469.2019.1597080Suche in Google Scholar

[24] A. Kassymov, M. Ruzhansky and D. Suragan, Reverse integral Hardy inequality on metric measure spaces, Ann. Fenn. Math. 47 (2022), no. 1, 39–55. 10.54330/afm.112455Suche in Google Scholar

[25] E. H. Lieb, Sharp constants in the Hardy–Littlewood–Sobolev and related inequalities, Ann. of Math. (2) 118 (1983), no. 2, 349–374. 10.1007/978-3-642-55925-9_43Suche in Google Scholar

[26] B. Muckenhoupt and R. Wheeden, Weighted norm inequalities for fractional integrals, Trans. Amer. Math. Soc. 192 (1974), 261–274. 10.1090/S0002-9947-1974-0340523-6Suche in Google Scholar

[27] Q. A. Ngô and V. H. Nguyen, Sharp reversed Hardy–Littlewood–Sobolev inequality on 𝐑 n , Israel J. Math. 220 (2017), no. 1, 189–223. 10.1007/s11856-017-1515-xSuche in Google Scholar

[28] T. Ozawa, M. Ruzhansky and D. Suragan, L p -Caffarelli–Kohn–Nirenberg type inequalities on homogeneous groups, Q. J. Math. 70 (2019), no. 1, 305–318. 10.1093/qmath/hay040Suche in Google Scholar

[29] T. Ozawa and H. Sasaki, Inequalities associated with dilations, Commun. Contemp. Math. 11 (2009), no. 2, 265–277. 10.1142/S0219199709003351Suche in Google Scholar

[30] C. Pérez, Two weighted norm inequalities for Riesz potentials and uniform L p -weighted Sobolev inequalities, Indiana Univ. Math. J. 39 (1990), no. 1, 31–44. 10.1512/iumj.1990.39.39004Suche in Google Scholar

[31] M. Ruzhansky and N. Yessirkegenov, Hypoelliptic functional inequalities, preprint (2018), https://arxiv.org/abs/1805.01064v1. Suche in Google Scholar

[32] M. Ruzhansky, B. Sabitbek and D. Suragan, Weighted anisotropic Hardy and Rellich type inequalities for general vector fields, NoDEA Nonlinear Differential Equations Appl. 26 (2019), no. 2, Paper No. 13. 10.1007/s00030-019-0559-5Suche in Google Scholar

[33] M. Ruzhansky, B. Sabitbek and D. Suragan, Weighted L p -Hardy and L p -Rellich inequalities with boundary terms on stratified Lie groups, Rev. Mat. Complut. 32 (2019), no. 1, 19–35. 10.1007/s13163-018-0268-3Suche in Google Scholar

[34] M. Ruzhansky, B. Sabitbek and D. Suragan, Hardy and Rellich inequalities for anisotropic p-sub-Laplacians, Banach J. Math. Anal. 14 (2020), no. 2, 380–398. 10.1007/s43037-019-00011-7Suche in Google Scholar

[35] M. Ruzhansky, B. Sabitbek and D. Suragan, Subelliptic geometric Hardy type inequalities on half-spaces and convex domains, Ann. Funct. Anal. 11 (2020), no. 4, 1042–1061. 10.1007/s43034-020-00067-9Suche in Google Scholar

[36] M. Ruzhansky and D. Suragan, Hardy and Rellich inequalities, identities, and sharp remainders on homogeneous groups, Adv. Math. 317 (2017), 799–822. 10.1016/j.aim.2017.07.020Suche in Google Scholar

[37] M. Ruzhansky and D. Suragan, Layer potentials, Kac’s problem, and refined Hardy inequality on homogeneous Carnot groups, Adv. Math. 308 (2017), 483–528. 10.1016/j.aim.2016.12.013Suche in Google Scholar

[38] M. Ruzhansky and D. Suragan, Local Hardy and Rellich inequalities for sums of squares of vector fields, Adv. Differential Equations 22 (2017), no. 7–8, 505–540. 10.57262/ade/1493863420Suche in Google Scholar

[39] M. Ruzhansky and D. Suragan, Hardy Inequalities on Homogeneous Groups, Progr. Math. 327, Birkhäuser/Springer, Cham, 2019. 10.1007/978-3-030-02895-4Suche in Google Scholar

[40] M. Ruzhansky, D. Suragan and N. Yessirkegenov, Caffarelli–Kohn–Nirenberg and Sobolev type inequalities on stratified Lie groups, NoDEA Nonlinear Differential Equations Appl. 24 (2017), no. 5, Paper No. 56. 10.1007/s00030-017-0478-2Suche in Google Scholar

[41] M. Ruzhansky, D. Suragan and N. Yessirkegenov, Extended Caffarelli–Kohn–Nirenberg inequalities, and remainders, stability, and superweights for L p -weighted Hardy inequalities, Trans. Amer. Math. Soc. Ser. B 5 (2018), 32–62. 10.1090/btran/22Suche in Google Scholar

[42] M. Ruzhansky, D. Suragan and N. Yessirkegenov, Sobolev type inequalities, Euler–Hilbert–Sobolev and Sobolev–Lorentz–Zygmund spaces on homogeneous groups, Integral Equations Operator Theory 90 (2018), no. 1, Paper No. 10. 10.1007/s00020-018-2437-7Suche in Google Scholar

[43] M. Ruzhansky and N. Yessirkegenov, Factorizations and Hardy-Rellich inequalities on stratified groups, J. Spectr. Theory 10 (2020), no. 4, 1361–1411. 10.4171/JST/330Suche in Google Scholar

[44] S. L. Sobolev, On a theorem of functional analysis, Mat. Sb. (N.S.) 4 (1938), 471–479; translation in Amer. Math. Soc. Transl. Ser. 2 34 (1963), 39–68. 10.1090/trans2/034/02Suche in Google Scholar

[45] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Math. Ser. 30, Princeton University, Princeton, 1970. 10.1515/9781400883882Suche in Google Scholar

[46] E. M. Stein and G. Weiss, Fractional integrals on n-dimensional Euclidean space, J. Math. Mech. 7 (1958), 503–514. 10.1512/iumj.1958.7.57030Suche in Google Scholar

Received: 2021-05-04
Revised: 2022-01-28
Published Online: 2022-07-23
Published in Print: 2022-09-01

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 4.2.2026 von https://www.degruyterbrill.com/document/doi/10.1515/forum-2021-0110/html
Button zum nach oben scrollen