Startseite Lebenswissenschaften Red clover (Trifolium pratense L.) honey: volatiles chemical-profiling and unlocking antioxidant and anticorrosion capacity
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Red clover (Trifolium pratense L.) honey: volatiles chemical-profiling and unlocking antioxidant and anticorrosion capacity

  • Igor Jerković EMAIL logo , Ani Radonić , Marina Kranjac , Marina Zekić , Zvonimir Marijanović , Senka Gudićc und Maja Kliškić
Veröffentlicht/Copyright: 11. Februar 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Headspace solid-phase micro-extraction (HS-SPME) and ultrasonic solvent extraction (USE) were used for red clover honey volatiles extraction. The extracts were analysed using gas chromatography and mass spectrometry (GC-MS). Lilac aldehyde isomers dominated in the headspace (individual range from 7.6 % to 21.4 %) followed by phenylacetaldehyde (10.1-31.2 %) and benzaldehyde (7.0-15.7 %). Higher aliphatic alcohols and hydrocarbons were the predominant constituents of the honey extracts. The honey and its extracts exhibited rather weak anti-radical activity (DPPH assay) and total antioxidant activity (FRAP assay). On the other hand, the honey’s inhibitive properties towards the corrosion of AA 2017A alloy in NaCl solution (potentiodynamic polarisation and potentiostatic pulse measurements) revealed the honey to be a very good anodic inhibitor (efficiency up to 76 %) while the honey extracts (USE) showed better inhibition efficacy.

7

7 References

Benzie, I. F. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Analytical Biochemistry, 239, 70-76. DOI: 10.1006/abio. 1996.0292.10.1006/abio.1996.0292Suche in Google Scholar

Beretta, G., Granata, P., Ferrero, M., Orioli, M., & Maffei Facino, R. (2005). Standardization of antioxidant properties of honey by a combination of spectrophotometric/fluorimetric assays and chemometrics. Analytica Chimica Acta, 533, 185-191. DOI: 10.1016/j.aca.2004.11.010.10.1016/j.aca.2004.11.010Suche in Google Scholar

Bertoncelj, J., Dobersek, U., Jamnik, M., & Golob, T. (2007). Evaluation of the phenolic content, antioxidant activity and colour of Slovenian honey. Food Chemistry, 105, 822-828. DOI: 10.1016/j.foodchem.2007.01.060.10.1016/j.foodchem.2007.01.060Suche in Google Scholar

Booth, N. L., Overk, C. R., Yao, P., Totura, S., Deng, Y., He- dayat, A. S., Bolton, J. L., Pauli, G. F., & Farnsworth, N. R. (2006). Seasonal variation of red clover (Trifolium pratense L., Fabaceae) isoflavones and estrogenic activity. Journal of Agricultural and Food Chemistry, 54, 1277-1282. DOI: 10.1021/jf052927u.10.1021/jf052927uSuche in Google Scholar

Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of free radical method to evaluate antioxidant activity. LWT-Food Science and Technology, 28, 25-30. DOI: 10.1016/s0023-6438(95)80008-5.10.1016/S0023-6438(95)80008-5Suche in Google Scholar

Buttery, R., Kamm, J. A., & Ling, L. C. (1984). Volatile components of red clover leaves, flowers, and seed pods: possible insect attractants. Journal of Agricultural and Food Chemistry, 32, 254-256. DOI: 10.1021/jf00122a019.10.1021/jf00122a019Suche in Google Scholar

Carroll, W. M., & Breslin, C. B. (1992). Activation of aluminium in halide solutions containing activator ions. Corrosion Science, 33, 1161-1177. DOI: 10.1016/0010-938x(92) 90170-8.10.1016/0010-938X(92)90170-8Suche in Google Scholar

Cubley, B. G. (1990). Chemical inhibitors for corrosion control. Cambridge, UK: The Royal Society of Chemistry.Suche in Google Scholar

Drenin, A. A., Botirov, E. K., & Turov, Y. P. (2011). A new isoflavone glycoside from Trifolium pratense L. Russian Journal of Bioorganic Chemistry, 37, 862-865. DOI: 10.1134/s1068162011070041.10.1134/S1068162011070041Suche in Google Scholar

El-Sayed, A. M. (2012). The pherobase: database of insect pheromones and semiochemicals, 2012, Retrieved June 30, 2015, from http://www.pherobase.comSuche in Google Scholar

Esmaeili, A. K., Taha, R. M., Mohajer, S., & Banisalam, B. (2015). Antioxidant activity and total phenolic and flavonoid content of various solvent extracts from in vivo and in vitro grown Trifolium pratense L. (red clover). BioMed Research International, 2015, 643285. DOI: 10.1155/2015/643285.10.1155/2015/643285Suche in Google Scholar PubMed PubMed Central

Gerengi, H., Goksu, H., & Slepski, P. (2014). The inhibition effect of mad honey on corrosion of 2007-Type aluminium alloy in 3.5 % NaCl solution. Materials Research, 17, 255264. DOI: 10.1590/s1516-14392013005000174.10.1590/S1516-14392013005000174Suche in Google Scholar

Howes, J., Waring, M., Huang, L., & Howes, L. G. (2002). Long-term pharmacokinetics of an extract of isoflavones from red clover (Trifolium pratense). The Journal of Alternative & Complementary Medicine, 8, 135-142. DOI: 10.1089/107555302317371424.10.1089/107555302317371424Suche in Google Scholar PubMed

Jerković, I., Marijanovic, Z., Kezic, J., & Gugic, M. (2009). Headspace, volatile and semi-volatile organic compounds diversity and radical scavenging activity of ultrasonic solvent extracts from Amorpha fruticosa honey samples. Molecules, 14, 2717-2728. DOI: 10.3390/molecules14082717.10.3390/molecules14082717Suche in Google Scholar PubMed PubMed Central

Jerković, I., & Marijanovic, Z. (2010). Oak (Quercus frainetto Ten.) honeydew honey- approach to screening of volatile organic composition and antioxidant capacity (DPPH and FRAP Assay). Molecules, 15, 3744-3756. DOI: 10.3390/ molecules15053744.10.3390/molecules15053744Suche in Google Scholar PubMed PubMed Central

Jerković, I., Marijanovic, Z., Ljubicic, I., & Gugic, M. (2010a). Contribution of the bees and combs to honey volatiles: blank-trial probe for chemical profiling of honey biodiversity. Chemistry & Biodiversity, 7, 1217-1230. DOI: 10.1002/cbdv.200900100.10.1002/cbdv.200900100Suche in Google Scholar PubMed

Jerković, I., Marijanovic, Z., Malenica-Staver, M., & Lusic, D. (2010b). Volatiles from a rare Acer spp. honey sample from Croatia. Molecules, 15, 4572-4582. DOI: 10.3390/molecules 15074572.10.3390/molecules15074572Suche in Google Scholar PubMed PubMed Central

Jerković, I., Tuberoso, C. I. G., Kasum, A., & Marijanovic, Z. (2011). Volatile compounds of Asphodelus microcarpus Salzm. et Viv. honey obtained by HS-SPME and USE analyzed by GC/MS. Chemistry & Biodiversity, 8, 587-598. DOI: 10.1002/cbdv.201000205.10.1002/cbdv.201000205Suche in Google Scholar PubMed

Jerković, I. (2013). Volatile benzene derivatives as honey biomarkers. Synlett, 24, 2331-2334. DOI: 10.1055/s-0033- 1338972.10.1055/s-0033-1338972Suche in Google Scholar

Jerković, I., & Kuś, P. M. (2014). Terpenes in honey: occurrence, origin and their role as chemical biomarkers. RSC Advances, 4, 31710-31728. DOI: 10.1039/c4ra04791e.10.1039/C4RA04791ESuche in Google Scholar

Jerković, I., Tuberoso, C. I. G., Marijanovic, Z., Kranjac, M., & Malenica-Staver, M. (2015). antioxidant capacity and chemical profiles of Satureja montana L. honey: hotrienol and syringyl derivatives as biomarkers. Chemistry & Biodiversity, 12, 1047-1056. DOI: 10.1002/cbdv.201400183.10.1002/cbdv.201400183Suche in Google Scholar PubMed

Kami, T. (1978). Aromatic constituents of forage crops. 3. Qualitative and quantitative analyses of the essential oils of red and ladino white clovers. Journal of Agricultural and Food Chemistry, 26, 1194-1197. DOI: 10.1021/jf60219a023.10.1021/jf60219a023Suche in Google Scholar

Kaskoniene, V., & Venskutonis, P. R. (2010). Floral markers in honey of various botanical and geographic origins: a review. Comprehensive Reviews in Food Science and Food Safety, 9, 620-634. DOI: 10.1111/j.1541-4337.2010.00130.x.10.1111/j.1541-4337.2010.00130.xSuche in Google Scholar PubMed

Krpan, M., Markovic, K., Saric, G., Skoko, B., Hruskar, M., & Vahcic, N. (2009). Antioxidant activities and total phenolics of acacia honey. Czech Journal of Food Sciences, 27, S245- S247.10.17221/1112-CJFSSuche in Google Scholar

Kulisic, T., Radonic, A., Katalinic, V., & Milos, M. (2004). Use of different methods for testing antioxidative activity of oregano essential oil. Food Chemistry, 85, 633-640. DOI: 10.1016/j.foodchem.2003.07.024.10.1016/j.foodchem.2003.07.024Suche in Google Scholar

Piljac-Žegarac;, J., Stipcevic, T., & Belscak, A. (2009). Antioxidant properties and phenolic content of different floral origin honeys. Journal of ApiProduct and ApiMedical Science, 1, 43-50. DOI: 10.3896/ibra.4.01.2.04.10.3896/IBRA.4.01.2.04Suche in Google Scholar

Primorac, L., Bubalo, D., Kenjeric, D., Flanjak, I., Piricki, A. P., & Mandic, M. L. (2008). Pollen spectrum and physicochemical characteristics of Croatian Mediterranean multifloral honeys. Deutsche Lebensmittel-Rundschau, 104, 170-175.Suche in Google Scholar

Radojčić, I., Berkovic, K., Kovac, S., & Vorkapic-Furac, J. (2008). Natural honey and black radish juice as tin corrosion inhibitors. Corrosion Science, 50, 1498-1504. DOI: 10.1016/j.corsci.2008.01.013.10.1016/j.corsci.2008.01.013Suche in Google Scholar

Rosliza, R., Wan Nik, W. B., Izman, S., & Prawoto, Y. (2010). Anti-corrosive properties of natural honey on Al-Mg-Si alloy in seawater. Current Applied Physics, 10, 923-929. DOI: 10.1016/j.cap.2009.11.074.10.1016/j.cap.2009.11.074Suche in Google Scholar

Saric, G., Markovic, K., Major, N., Krpan, M., Ursulin-Trstenjak, N., Hruskar, M., & Vahcic, N. (2012). Changes of antioxidant activity and phenolic content in Acacia and multifloral honey during storage. Food Technology and Biotechnology, 50, 434-441.Suche in Google Scholar

Sastri, V. S. (2001). Corrosion Inhibitors: Principles and applications. Chichester, UK: John Wiley & Sons.Suche in Google Scholar

Saviranta, N. M. M., Anttonen, M. J., von Wright, A., & Karjalainen, R. O. (2008). Red clover (Trifolium pratense L.) isoflavones: determination of concentrations by plant stage, flower colour, plant part and cultivar. Journal of the Science of Food and Agriculture, 88, 125-132. DOI: 10.1002/jsfa.3056.10.1002/jsfa.3056Suche in Google Scholar

Tuberoso, C. I. G., Bifulco, E., Jerković, I., Caboni, P., Cabras, P., & Floris, I. (2009). Methyl syringate: A chemical marker of Asphodel (Asphodelus microcarpus Salzm. et Viv.) monofloral honey. Journal of Agricultural and Food Chemistry, 57, 3895-3900. DOI: 10.1021/jf803991j.10.1021/jf803991jSuche in Google Scholar PubMed

Tuberoso, C. I. G., Jerković, I., Bifulco, E., & Marijanovic, Z. (2011) . Biodiversity of Salix spp. honeydew and nectar honeys determined by RP-HPLC and evaluation of their antioxidant capacity. Chemistry & Biodiversity, 8, 872-879. DOI: 10.1002/cbdv.201000359.10.1002/cbdv.201000359Suche in Google Scholar PubMed

Vlaisavljevic, S., Kaurinovic, B., Popovic, M., Djurendic- Brenesel, M., Vasiljevic, B., Cvetkovic, D., & Vasiljevic, S. (2014). Trifolium pratense L. as a potential natural antioxidant. Molecules, 19, 713-725. DOI: 10.3390/molecules19010 713.10.3390/molecules19010713Suche in Google Scholar PubMed PubMed Central

Von der Ohe, W., Persano Oddo, L., Piana, M. L., Morlot, M., & Martin, P. (2004). Harmonized methods of melissopalynology. Apidologie, 35, S18-S25. DOI: 10.1051/apido:2004050.10.1051/apido:2004050Suche in Google Scholar

Vrsalović, L., Gudic, S., & Kliskic, M. (2012). Salvia officinalis L. honey as corrosion inhibitor for CuNiFe alloy in sodium chloride solution. Indian Journal of Chemical Technology, 19, 96-102.Suche in Google Scholar

Received: 2015-6-23
Revised: 2015-11-16
Accepted: 2015-11-26
Published Online: 2016-2-11
Published in Print: 2016-6-1

© 2016 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Original Paper
  2. A practical approach to non-spectral interferences elimination in inductively coupled plasma optical emission spectrometry
  3. Original Paper
  4. Two 1,8-naphthalimide-based proton-receptor fluorescent probes for pH determination
  5. Original Paper
  6. Fabrication of amperometric cholesterol biosensor based on SnO2 nanoparticles and Nafion-modified carbon paste electrode
  7. Original Paper
  8. Preparation and catalytic performance of quaternary ammonium base resin for methanolysis of natural phosphatidylcholine
  9. Original Paper
  10. Optimisation of microwave-assisted extraction from Phyllanthus amarus for phenolic compounds-enriched extracts and antioxidant capacity
  11. Original Paper
  12. Red clover (Trifolium pratense L.) honey: volatiles chemical-profiling and unlocking antioxidant and anticorrosion capacity
  13. Original Paper
  14. Application of vacuum membrane distillation for concentration of organic solutions
  15. Original Paper
  16. Correlations for mixing energy in processes using Rushton turbine mixer‡
  17. Original Paper
  18. Recovery of Au(III) ions by Au(III)-imprinted hydrogel
  19. Original Paper
  20. Initiation behaviour in hydrogenation of pyrolysis gasoline over presulphided Ni-Mo-Zn/Al2O3 catalyst
  21. Original Paper
  22. Methodology considering surface roughness in UV water disinfection reactors
  23. Original Paper
  24. Comparison of changes of basic parameters of asphalt caused by various additives
  25. Original Paper
  26. Effect of carbon nanotube modification on poly (butylene terephthalate)-based composites
  27. Original Paper
  28. Evaluation of influence of selected metal cations on antioxidant activity of extracts from savory (Satureja hortensis)
  29. Original Paper
  30. Radical-scavenging activity of glutathione, chitin derivatives and their combination
  31. Original Paper
  32. Piroxicam /β-cyclodextrin complex included in cellulose derivatives-based matrix microspheres as new solid dispersion-controlled release formulations
  33. Original Paper
  34. Avobenzone encapsulated in modified dextrin for improved UV protection and reduced skin penetration
  35. Original Paper
  36. Analysis of the dynamics of laser induced plume propagation from liquid matrix using fast photography
  37. Original Paper
  38. OH-initiated oxidation mechanism and kinetics of organic sunscreen benzophenone-3: A theoretical study
Heruntergeladen am 28.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/chempap-2016-0016/html
Button zum nach oben scrollen