Startseite Lebenswissenschaften Influence of solvents and novel extraction methods on bioactive compounds and antioxidant capacity of Phyllanthus amarus
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Influence of solvents and novel extraction methods on bioactive compounds and antioxidant capacity of Phyllanthus amarus

  • Van Tang Nguyen EMAIL logo , Hong Ngoc Thuy Pham , Michael C. Bowyer , Ian A. van Altena und Christopher J. Scarlett EMAIL logo
Veröffentlicht/Copyright: 11. Februar 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Phyllanthus amarus (P. amarus) is a herbal plant used in the treatment of various diseases such as hepatitis, diabetes, and cancer. Efficiency of its bioactive compounds extraction and therefore the biological activity of the extracts are significantly influenced by both solvent character and extraction method. This study is aimed at the determination of the influence of six various solvents (water, acetonitrile, ethanol, methanol, ethyl acetate, and dichloromethane) and nine different extraction methods (conventional, ultrasound-assisted, microwave-assisted, and six novel methods) on the extraction efficiency and antioxidant capacity of P. amarus. The results indicated that water extracted the maximal amount of phenolics from P. amarus and had the highest antioxidant capacity, while microwave-assisted extraction provided the highest yields of phenolics and saponins, and the highest antioxidant capacity with the lowest energy consumption when compared to the other extraction methods. These findings implied that water and microwave-assisted extraction are recommended as the most effective solvent and method for the extraction of bioactive compounds from P. amarus for potential application in the pharmaceutical and nutraceutical industries.

Acknowledgements

The authors sincerely acknowledge the funding support from the Ramaciotti Foundation (ES2012/0104) and the University of Newcastle, Faculty of Science and Information Technology. The authors kindly thank the Vietnamese Government through the Vietnam International Education Development-Ministry of Education and Training (Project 911) and the University of Newcastle for awarding a VIEDTUIT scholarship to Van Tang Nguyen. The authors would also like to thank the Center of Experiment and Practice at the Nha Trang University for technical support.

References

Amoros, M., Fauconnier, B., & Girre, R. L. (1987). In vitro antiviral activity of a saponin from Anagallis arvensis, Primulaceae, against herpes simplex virus and poliovirus. Antiviral Research, 8, 13–25. DOI: 10.1016/0166-3542(87)90084-2.10.1016/0166-3542(87)90084-2Suche in Google Scholar

Apak, R., Gorinstein, S., Böhm, V., Schaich, K. M., Ozyürek, ¨M., & Güçlü, K. (2013). Methods of measurement and evaluation of natural antioxidant capacity/activity (IUPAC technical report). Pure and Applied Chemistry, 85, 957–998. DOI: 10.1351/pac-rep-12-07-15.10.1351/pac-rep-12-07-15Suche in Google Scholar

Azmir, J., Zaidul, I. S. M., Rahman, M. M., Sharif, K. M., Mohamed, A., Sahena, F., Jahurul, M. H. A., Ghafoor, K., Norulaini, N. A. N., & Omar, A. K. M. (2013). Techniques for extraction of bioactive compounds from plant materials: A review. Journal of Food Engineering, 117, 426–436. DOI: 10.1016/j.jfoodeng.2013.01.014.10.1016/j.jfoodeng.2013.01.014Suche in Google Scholar

Cheok, C. Y., Salman, H. A. K., & Sulaiman, R. (2014). Extraction and quantification of saponins: A review. Food Research International, 59, 16–40. DOI: 10.1016/j.foodres.2014.01.057.10.1016/j.foodres.2014.01.057Suche in Google Scholar

Chisté, R. C., de Toledo Benassi, M., & Mercadante, A. Z. (2014). Efficiency of different solvents on the extraction of bioactive compounds from the Amazonian fruit Caryocar villosum and the effect on its antioxidant and colour properties. Phytochemical Analysis, 25, 364–372. DOI: 10.1002/pca.2489.10.1002/pca.2489Suche in Google Scholar

Cunniff, P. (1995). Official methods of analysis of AOAC International (16th ed.). Arlington, VA, USA: Association of Analytical Communities.Suche in Google Scholar

Dai, J., & Mumper, R. J. (2010). Plant phenolics: Extraction, analysis and their antioxidant and anticancer properties. Molecules, 15, 7313–7352. DOI: 10.3390/molecules15107313.10.3390/molecules15107313Suche in Google Scholar PubMed PubMed Central

Dhanani, T., Shah, S., Gajbhiye, N. A., & Kumar, S. (2013). Effect of extraction methods on yield, phytochemical constituents and antioxidant activity of Withania somnifera. Arabian Journal of Chemistry. DOI: 10.1016/j. arabjc.2013.02.015. (in press)10.1016/j.arabjc.2013.02.015Suche in Google Scholar

Doughari, J. H. (2012). Phytochemicals: Extraction methods, basic structures and mode of action as potential chemotherapeutic agents. In V. Rao (Ed.), Phytochemicals - A global perspective of their role in nutrition and health (chapter 1, pp. 1–32). Rijeka, Croatia: InTech. DOI: 10.5772/26052.10.5772/26052Suche in Google Scholar

Garofulić, I. E., Dragović-Uzelac, V., Režek Jambrak, A., & Jukić, M. (2013). The effect of microwave assisted extraction on the isolation of anthocyanins and phenolic acids from sour cherry Marasca (Prunus cerasus var. Marasca). Journal of Food Engineering, 117, 437–442. DOI: 10.1016/j.jfoodeng.2012.12.043.10.1016/j.jfoodeng.2012.12.043Suche in Google Scholar

Hamrouni-Sellami, I., Rahali, F. Z., Rebey, I. B., Bourgou, S., Limam, F., & Marzouk, B. (2013). Total phenolics, flavonoids, and antioxidant activity of Sage (Salvia officinalis L.) plants as affected by different drying methods. Food and Bioprocess Technology, 6, 806–817. DOI 10.1007/s11947-012-0877-7.10.1007/s11947-012-0877-7Suche in Google Scholar

Hari Kuma, K. B., & Kuttan, R. (2004). Protective effect of an extract of Phyllanthus amarus against radiation-induced damage in mice. Journal of Radiation Research, 45, 133–139. DOI: 10.1269/jrr.45.133.10.1269/jrr.45.133Suche in Google Scholar

Jin, J., Ma, H., Wang, W., Luo, M., Wang, B., Qu, W., He, R., Owusu, J., & Li, Y. (2015). Effects and mechanism of ultrasound pretreatment on rapeseed protein enzymolysis. Journal of the Science of Food and Agriculture. DOI: 10.1002/jsfa.7198. (in press)10.1002/jsfa.7198Suche in Google Scholar

Kalia, K., Sharma, K., Singh, H. P., & Singh, B. (2008). Effects of extraction methods on phenolic contents and antioxidant activity in aerial parts of Potentilla atrosanguinea Lodd. and quantification of its phenolic constituents by RPHPLC. Journal of Agricultural and Food Chemistry, 56, 10129–10134. DOI: 10.1021/jf802188b.10.1021/jf802188bSuche in Google Scholar

Kamonwannasit, S., Nantapong, N., Kumkrai, P., Luecha, P., Kupittayanant, S., & Chudapongse, N. (2013). Antibacterial activity of Aquilaria crassna leaf extract against Staphylococcus epidermidis by disruption of cell wall. Annals of Clinical Microbiology and Antimicrobials, 12, art. no. 20. DOI: 10.1186/1476-0711-12-20.10.1186/1476-0711-12-20Suche in Google Scholar

Kha, T. C., & Nguyen, M. H. (2014). Extraction and isolation of plant bioactives. In C. J. Scarlett, & Q. V. Vuong (Eds.), Plant bioactive compounds for pancreatic cancer prevention and treatment (Series: Cancer etiology, diagnosis and treatments, chapter 6, pp. 117–144). Hauppauge, NY, USA: Nova Science Publishers.Suche in Google Scholar

Lacaille-Dubois, M. A. (2005). Bioactive saponins with cancer related and immunomodulatory activity: Recent developments. In Atta-ur-Rahman (Ed.), Bioactive natural products (Series: Studies in natural products chemistry, Vol. 32, Part L, pp. 209–246). Amsterdam, The Netherlands: Elsevier. DOI: 10.1016/s1572-5995(05)80057-2.10.1016/s1572-5995(05)80057-2Suche in Google Scholar

Lim, Y. Y., & Murtijaya, J. (2007). Antioxidant properties of Phyllanthus amarus extracts as affected by different drying methods. LWT – Food Science and Technology, 40, 1664– 1669. DOI: 10.1016/j.lwt.2006.12.013.10.1016/j.lwt.2006.12.013Suche in Google Scholar

Londhe, J. S., Devasagayam, T. P. A., Foo, L. Y., & Ghaskadbi, S. S. (2008). Antioxidant activity of some polyphenol constituents of the medicinal plant Phyllanthus amarus Linn. Redox Report, 13, 199–207. DOI: 10.1179/135100008x308984.10.1179/135100008x308984Suche in Google Scholar

Londhe, J. S., Devasagayam, T. P. A., Foo, L. Y., Shastry, P., & Ghaskadbi, S. S. (2012). Geraniin and amariin, ellagitannins from Phyllanthus amarus, protect liver cells against ethanol induced cytotoxicity. Fitoterapia, 83, 1562– 1568. DOI: 10.1016/j.fitote.2012.09.003.10.1016/j.fitote.2012.09.003Suche in Google Scholar PubMed

Mahomoodally, M. F., & Muthoora, D. D. (2014). Kinetic of inhibition of carbohydrate-hydrolysing enzymes, antioxidant activity and polyphenolic content of Phyllanthus amarus Schum. & Thonn. (Phyllanthaceae). Journal of Herbal Medicine, 4, 208–223. DOI: 10.1016/j.hermed.2014.09.003.10.1016/j.hermed.2014.09.003Suche in Google Scholar

Maity, S., Chatterjee, S., Variyar, P. S., Sharma, A., Adhikari, S., & Mazumder, S. (2013). Evaluation of antioxidant activity and characterization of phenolic constituents of Phyllanthus amarus root. Journal of Agricultural and Food Chemistry, 61, 3443–3450. DOI: 10.1021/jf3046686.10.1021/jf3046686Suche in Google Scholar PubMed

Mandal, P., Sinha Babu, S. P., & Mandal, N. C. (2005). Antimicrobial activity of saponins from Acacia auriculiformis. Fitoterapia, 76, 462–465. DOI: 10.1016/j.fitote.2005.03.004.10.1016/j.fitote.2005.03.004Suche in Google Scholar PubMed

Maryott, A. A., & Smith, E. R. (1951). Table of dielectric constants of pure liquids. National Bureau of Standards Circular 514. Washington, D.C., USA: U.S. Government Printing Office.10.6028/NBS.CIRC.514Suche in Google Scholar

Naumovski, N. (2014). Bioactive composition of plants and plant foods. In C. J. Scarlett, & Q. V. Vuong (Eds.), Plant bioactive compounds for pancreatic cancer prevention and treatment (Series: Cancer etiology, diagnosis and treatments, chapter 5, pp. 81–115). Hauppauge, NY, USA: Nova Science Publishers.Suche in Google Scholar

Nguyen, V. T., Ueng, J. P., & Tsai, G. J. (2011). Proximate composition, total phenolic content, and antioxidant activity of seagrape (Caulerpa lentillifera). Journal of Food Science, 76, C950–C958. DOI: 10.1111/j.1750-3841.2011.02289.x.10.1111/j.1750-3841.2011.02289.xSuche in Google Scholar PubMed

Nguyen, V. T., Vuong, Q. V., Bowyer, M. C., Van Altena, I. A., & Scarlett, C. J. (2015a). Effects of different drying methods on bioactive compound yield and antioxidant capacity of Phyllanthus amarus. Drying Technology, 33, 1006–1017. DOI: 10.1080/07373937.2015.1013197.10.1080/07373937.2015.1013197Suche in Google Scholar

Nguyen, V. T., Bowyer, M. C., Vuong, Q. V., Van Altena, I. A., & Scarlett, C. J. (2015b). Phytochemicals and antioxidant capacity of Xao tam phan (Paramignya trimera) root as affected by various solvents and extraction methods. Industrial Crops and Products, 67, 192–200. DOI: 10.1016/j.indcrop.2015.01.051.10.1016/j.indcrop.2015.01.051Suche in Google Scholar

Nguyen, V. T., Pham, N. M. Q., Vuong, Q. V., Bowyer, M. C., van Altena, I. A., & Scarlett, C. J. (2015c). Phytochemical retention and antioxidant capacity of Xao Tam Phan (Paramignya trimera) root as prepared by different drying methods. Drying Technology. DOI: 10.1080/07373937.2015. 1053566. (in press)10.1080/07373937.2015.1053566Suche in Google Scholar

O’Brien, W. D., Jr. (2007). Ultrasound–biophysics mechanisms. Progress in Biophysics and Molecular Biology, 93, 212–255. DOI: 10.1016/j.pbiomolbio.2006.07.010.10.1016/j.pbiomolbio.2006.07.010Suche in Google Scholar PubMed PubMed Central

Osbourn, A., Goss, R. J. M., & Field, R. A. (2011). The saponins – polar isoprenoids with important and diverse biological activities. Natural Product Reports, 28, 1261–1268. DOI: 10.1039/c1np00015b.10.1039/c1np00015bSuche in Google Scholar PubMed

Patel, J. R., Tripathi, P., Sharma, V., Chauhan, N. S., & Dixit, V. K. (2011). Phyllanthus amarus: Ethnomedicinal uses, phytochemistry and pharmacology: A review. Journal of Ethnopharmarcology, 138, 286–313. DOI: 10.1016/j.jep.2011.09.040.10.1016/j.jep.2011.09.040Suche in Google Scholar PubMed

Podolak, I., Galanty, A., & Sobolewska, D. (2010). Saponins as cytotoxic agents: a review. Phytochemistry Reviews, 9, 425– 474. DOI: 10.1007/s11101-010-9183-z.10.1007/s11101-010-9183-zSuche in Google Scholar PubMed PubMed Central

Poh-Hwa, T., Yoke-Kqueen, C., Indu Bala, J., & Son, R. (2011). Bioprotective properties of three Malaysia Phyllanthus species: An investigation of the antioxidant and antimicrobial activities. International Food Research Journal, 18, 887–893.Suche in Google Scholar

Rahman, M., Hossain, S., Rahaman, A., Fatima, N., Nahar, T., Uddin, B., & Basunia, M. A. (2013). Antioxidant activity of Centella asiatica (Linn.) urban: Impact of extraction solvent polarity. Journal of Pharmacognosy and Phytochemistry, 1, 27–32.Suche in Google Scholar

Roengrit, T., Wannanon, P., Prasertsri, P., Kanpetta, Y., Sripanidkulchai, B. O., & Leelayuwat, N. (2014). Antioxidant and anti-nociceptive effects of Phyllanthus amarus on improving exercise recovery in sedentary men: a randomized crossover (double-blind) design. Journal of the International Society of Sports Nutrition, 11, article no. 9. DOI: 10.1186/1550-2783-11-9.10.1186/1550-2783-11-9Suche in Google Scholar PubMed PubMed Central

Sarin, B., Verma, N., Martín, J. P., & Mohanty, A. (2014). An overview of important ethnomedicinal herbs of Phyllanthus species: Present status and future prospects. The Scientific World Journal, article ID 839172. DOI: 10.1155/2014/839 172.10.1155/2014/839 172Suche in Google Scholar

Sen, A., & Batra, A. (2013). The study of in vitro and in vivo antioxidant activity and total phenolic content of Phyllanthus amarus Schum. & Thonn.: A medicinally important plant. International Journal of Pharmacy and Pharmaceutical Sciences, 5, 942–947.Suche in Google Scholar

Shahriar, M., Hossain, M. I., Sharmin, F. A., Akhter, S., Haque, M. A., & Bhuiyan, M. A. (2013). In vitro antioxidant and free radical scavenging activity of Withania somnifera root. IOSR Journal of Pharmacy, 3, 38–47. DOI: 10.9790/3013-32203847.10.9790/3013-32203847Suche in Google Scholar

Shokunbi, O. S., & Odetola, A. A. (2008). Gastroprotective and antioxidant activities of Phyllanthus amarus extracts on absolute ethanol-induced ulcer in albino rats. Journal of Medicinal Plants Research, 2, 261–267.Suche in Google Scholar

Tang, Y. Q., & Sekaran, S. D. (2011). Evaluation of Phyllanthus for its anti-cancer properties. In P. E. Spiess (Ed.), Prostate cancer - from bench to bedside (chapter 14, pp. 305–320). Rijeka, Croatia: InTech. DOI: 10.5772/27296.10.5772/27296Suche in Google Scholar

Tang, Y. Q., Jaganath, I., Manikam, R., & Sekaran, S. D. (2013). Phyllanthus suppresses prostate cancer cell, PC-3, proliferation and induces apoptosis through multiple signalling pathways (MAPKs, PI3K/Akt, NFκB, and hypoxia). Evidence-Based Complementary and Alternative Medicine, 2013, article ID 609581. DOI: 10.1155/2013/609581.10.1155/2013/609581Suche in Google Scholar PubMed PubMed Central

Tiwari, P., Kumar, B., Kaur, M., Kaur, G., & Kaur, H. (2011). Phytochemical screening and extraction: A review. Internationale Pharmaceutica Sciencia, 1, 98–106.Suche in Google Scholar

Vijayakumar, A., Kumar, P. P., & Jeyaraj, B. (2013). Antioxidant activity of Illicium griffithi Hook. f. & Thoms seeds in vitro. Asian Journal of Pharmaceutical and Clinical Research, 6, 269–273.Suche in Google Scholar

Vuong, Q. V., Hirun, S., Roach, P. D., Bowyer, M. C., Phillips, P. A., & Scarlett, C. J. (2013). Effect of extraction conditions on total phenolic compounds and antioxidant activities of Carica papaya leaf aqueous extracts. Journal of Herbal Medicine, 3, 104–111. DOI: 10.1016/j.hermed.2013.04.004.10.1016/j.hermed.2013.04.004Suche in Google Scholar

Vuong, Q. V., Hirun, S., Chuen, T. L. K., Goldsmith, C. D., Bowyer, M. C., Chalmers, A. C., Phillips, P. A., & Scarlett, C. J. (2014). Physicochemical composition, antioxidant and anti-proliferative capacity of a lilly pilly (Syzygium paniculatum) extract. Journal of Herbal Medicine, 4, 134–140. DOI: 10.1016/j.hermed.2014.04.003.10.1016/j.hermed.2014.04.003Suche in Google Scholar

Weng, Y., Yu, L., Cui, J., Zhu, Y. R., Guo, C., Wei, G., Duan, J. L., Yin, Y., Guan, Y., Wang, Y. H., Yang, Z. F., Xi, M. M., & Wen, A. D. (2014). Antihyperglycemic, hypolipidemic and antioxidant activities of total saponins extracted from Aralia taibaiensis in experimental type 2 diabetic rats. Journal of Ethnopharmacology, 152, 553–560. DOI: 10.1016/j.jep.2014.02.001.10.1016/j.jep.2014.02.001Suche in Google Scholar PubMed

Yao, K., Dong, Y. Y., Bian, J., Ma, M. G., & Li, J. F. (2015). Understanding the mechanism of ultrasound on the synthesis of cellulose/Cu(OH)2/CuO hybrids. Ultrasonics Sonochemistry, 24, 27–35. DOI: 10.1016/j.ultsonch.2014.12.002.10.1016/j.ultsonch.2014.12.002Suche in Google Scholar PubMed

Yoshikawa, M., Morikawa, T., Kashima, Y., Ninomiya, K., & Matsuda, H. (2003). Structures of new dammarane-type triterpene saponins from the flower buds of Panax notoginseng and hepatoprotective effects of principal ginseng saponins. Journal of Natural Products, 66, 922–927. DOI: 10.1021/np030015l.10.1021/np030015lSuche in Google Scholar PubMed

Received: 2015-6-28
Revised: 2015-9-23
Accepted: 2015-10-3
Published Online: 2016-2-11
Published in Print: 2016-5-1

© 2015 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Original Paper
  2. Preparation and characterisation of gelatine hydrogels predisposed to use as matrices for effective immobilisation of biocatalystst
  3. Original Paper
  4. Photocatalytic reduction of nitro aromatic compounds to amines using a nanosized highly active CdS photocatalyst under sunlight and blue LED irradiation
  5. Original Paper
  6. Synthesis of butyrate using a heterogeneous catalyst based on polyvinylpolypyrrolidone
  7. Original Paper
  8. Behaviour of selected pesticide residues in blackcurrants (Ribes nigrum) during technological processing monitored by liquid-chromatography tandem mass spectrometry
  9. Original Paper
  10. Influence of solvents and novel extraction methods on bioactive compounds and antioxidant capacity of Phyllanthus amarus
  11. Original Paper
  12. Investigation of phytochemicals and antioxidant capacity of selected Eucalyptus species using conventional extraction
  13. Original Paper
  14. Innovative approach to treating waste waters by a membrane capacitive deionisation system
  15. Original Paper
  16. Liquid—liquid equilibria of ternary systems of 1-hexene/hexane and extraction solvents
  17. Original Paper
  18. Design of extractive distillation process with mixed entraineri‡
  19. Original Paper
  20. Kinetic study of non-reactive iron removal from iron-gall inks
  21. Original Paper
  22. Chemoenzymatic polycondensation of para-benzylamino phenol
  23. Original Paper
  24. Copper corrosion behaviour in acidic sulphate media in the presence of 5-methyl-lH-benzotriazole and 5-chloro-lH-benzotriazole
  25. Original Paper
  26. Synthesis of new 5-bromo derivatives of indole and spiroindole phytoalexins
  27. Original Paper
  28. Design, synthesis and anti-mycobacterial evaluation of some new iV-phenylpyrazine-2-carboxamides
  29. Short Communication
  30. Convenient amidation of carboxyl group of carboxyphenylboronic acids
  31. Short Communication
  32. A novel intramolecular reversible reaction between the hydroxyl group and isobutenylene chain in a cyclophane-type macrocycle
  33. Erratum
  34. Erratum to “Adriana Bakalova, Boryana Nikolova-Mladenova, Rossen Buyukliev, Emiliya Cherneva, Georgi Momekov, Darvin Ivanov: Synthesis, DFT calculations and characterisation of new mixed Pt(II) complexes with 3-thiolanespiro-5′-hydantoin and 4-thio-1H-tetrahydropyranspiro-5′-hydantoin”, Chemical Papers 70 (1) 93–100 (2016)*
  35. Erratum
  36. Erratum to “Martyna Rzelewska, Monika Baczyńska, Magdalena Regel-Rosocka, Maciej Wiśniewski: Trihexyl(tetradecyl)phosphonium bromide as extractant for Rh(III), Ru(III) and Pt(IV) from chloride solutions”, Chemical Papers 70 (4) 454–460 (2016)*
Heruntergeladen am 28.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/chempap-2015-0240/pdf
Button zum nach oben scrollen