Startseite Contribution of procoagulant phospholipids, thrombomodulin activity and thrombin generation assays as prognostic factors in intensive care patients with septic and non-septic organ failure
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Contribution of procoagulant phospholipids, thrombomodulin activity and thrombin generation assays as prognostic factors in intensive care patients with septic and non-septic organ failure

  • Patrick Van Dreden , Barry Woodhams , Aurélie Rousseau , Jean-François Dreyfus und Marc Vasse EMAIL logo
Veröffentlicht/Copyright: 19. August 2012
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Background: Multiple organ dysfunction syndrome (MODS) observed in patients with sepsis and in non-septic patients organ failure (OF) is associated with a high mortality rate. We investigated whether new coagulation assays [quantification of procoagulant phospholipids (PPL) activity, functional assays measuring the activity of thrombomodulin (TMa) or tissue factor (TFa) and thrombin generation using calibrated automated thrombography (CAT)] could constitute new tools to better understand the physiopathology of MODS and have any prognostic value.

Methods: We measured TMa, TFa, PPL and CAT in 32 healthy controls, 24 patients with sepsis and 26 patients with non-septic OF. We compared these parameters with usual coagulation assays [prothrombin time, activated partial thromboplastin time, protein C (PC), protein S, D-Dimers (D-Di), soluble thrombomodulin (sTM)] and markers of inflammation (IL-6, CRP). Samples were collected within 24 h of the diagnosis.

Results: TMa, TFa, PPL, the lag time and time to thrombin peak levels were increased in both groups of patients. For both groups D-Di, IL-6, CRP and endogenous thrombin potential (ETP) were higher in non-survivors than in survivors, while PC and PPL were lower in non-survivors than in survivors. TMa increase was more marked in non-survivors patients with OF, while the ratio TMa/sTM was low in non-survivors with sepsis. Received operating characteristic (ROC) curve analysis indicated that thrombin peak and ETP were the more powerful discriminating factors in patients with sepsis or non-septic OF, respectively.

Conclusions: PPL, TMa and CAT assays could represent promising tools to identify patients with increased risk of mortality in MODS and could procure insights into pathogenesis of MODS.


Corresponding author: Marc Vasse, UF d’Hémostase Cellulaire, Laboratoire d’Hématologie, IBC-CHU de Rouen & 3829 (Groupe MERCI), 1 rue de Germont, 76031 Rouen cedex, France, Phone: +33 1 46252957, Fax: +33 1 46252422

References

1. Chalupka AN, Talmor D. The economics of sepsis. Crit Care Clin 2012;28:57–76.10.1016/j.ccc.2011.09.003Suche in Google Scholar PubMed

2. Levi M, van der Poll T, Schultz M. Systemic versus localized coagulation activation contributing to organ failure in critically ill patients. Semin Immunopathol 2012;34:167–79.10.1007/s00281-011-0283-7http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=000297845200012&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Suche in Google Scholar PubMed PubMed Central

3. Kitchens CS. Thrombocytopenia and thrombosis in disseminated intravascular coagulation (DIC). Hematol Am Soc Hematol Educ Program 2009:240–6.10.1182/asheducation-2009.1.240Suche in Google Scholar PubMed

4. Saracco P, Vitale P, Scolfaro C, Pollio B, Pagliarino M, Timeus F. The coagulopathy in sepsis: significance and implications for treatment. Pediatr Rep 2011;3:e30.10.4081/pr.2011.e30Suche in Google Scholar PubMed PubMed Central

5. Stief TW, Ijagha O, Weiste B, Herzum I, Renz H, Max M. Analysis of hemostasis alterations in sepsis. Blood Coagul Fibrinolysis 2007;18:179–86.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=000244847900014&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f310.1097/MBC.0b013e328040bf9aSuche in Google Scholar PubMed

6. Egorina EM, Sovershaev MA, Hansen JB. The role of tissue factor in systemic inflammatory response syndrome. Blood Coagul Fibrinolysis 2011;22:451–6.10.1097/MBC.0b013e328346ef3fhttp://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=000293823700001&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Suche in Google Scholar PubMed

7. Gando S, Nanzaki S, Sasaki S, Kemmotsu O. A significant correlation between tissue factor and thrombin markers in trauma and septic patients with disseminated intravascular coagulation. Thromb Haemost 1996;75:224–8.Suche in Google Scholar

8. Edgington TS, Mackman N, Fan ST, Ruf W. Cellular immune and cytokine pathways resulting in tissue factor expression and relevance to septic shock. Nouv Rev Fr Hematol 1992;34(Suppl):S15–27.Suche in Google Scholar PubMed

9. Srinivasan R, Ozhegov E, van den Berg YW, Aronow BJ, Franco RS, Palascak MB, et al. Splice variants of tissue factor promote monocyte-endothelial interactions by triggering the expression of cell adhesion molecules via integrin-mediated signaling. J Thromb Haemost 2011;9:2087–96.10.1111/j.1538-7836.2011.04454.xhttp://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=000295382900025&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Suche in Google Scholar PubMed PubMed Central

10. Bogdanov VY, Balasubramanian V, Hathcock J, Vele O, Lieb M, Nemerson Y. Alternatively spliced human tissue factor: a circulating, soluble, thrombogenic protein. Nat Med 2003;9:458–62.10.1038/nm841Suche in Google Scholar PubMed

11. Bach RR. Tissue factor encryption. Arterioscler Thromb Vasc Biol 2006;26:456–61.10.1161/01.ATV.0000202656.53964.04Suche in Google Scholar PubMed

12. Wesselschmidt R, Likert K, Girard T, Wun TC, Broze GJ Jr. Tissue factor pathway inhibitor: the carboxy-terminus is required for optimal inhibition of factor Xa. Blood 1992;79: 2004–10.10.1182/blood.V79.8.2004.2004Suche in Google Scholar PubMed

13. Faust SN, Levin M, Harrison O, Goldin RD, Lockhart MS, Kondaveeti S, et al. Dysfunction of the endothelial protein C pathway in the coagulopathy of meningococcal sepsis. N Engl J Med 2001;345:408–16.10.1056/NEJM200108093450603Suche in Google Scholar PubMed

14. Strijbos MH, Rao C, Schmitz PI, Kraan J, Lamers CH, Sleijfer S, et al. Correlation between circulating endothelial cell counts and plasma thrombomodulin levels as markers for endothelial damage. Thromb Haemost 2008;100:642–7.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=000260216000020&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Suche in Google Scholar PubMed

15. Lind M, Boman K, Johansson L, Nilsson TK, Ohlin AK, Birgander LS, et al. Thrombomodulin as a marker for bleeding complications during warfarin treatment. Arch Intern Med 2009;169:1210–5.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=000268188900009&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Suche in Google Scholar

16. Semeraro F, Ammollo CT, Morrissey JH, Dale GL, Friese P, Esmon NL, et al. Extracellular histones promote thrombin generation through platelet-dependent mechanisms: involvement of platelet TLR2 and TLR4. Blood 2011;118:1952–61.10.1182/blood-2011-03-343061http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=000294011500035&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Suche in Google Scholar PubMed PubMed Central

17. Mastronardi ML, Mostefai HA, Meziani F, Martãnez MC, Asfar P, Andriantsitohaina R. Circulating microparticles from septic shock patients exert differential tissue expression of enzymes related to inflammation and oxidative stress. Crit Care Med 2011;39:1739–48.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=000291721800017&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f310.1097/CCM.0b013e3182190b4bSuche in Google Scholar PubMed

18. Hemker HC, Al Dieri R, De Smedt E, Béguin S. Thrombin generation, a function test of the haemostatic-thrombotic system. Thromb Haemost 2006;96:553–61.10.1160/TH06-07-0408Suche in Google Scholar PubMed

19. Borgel D, Bornstain C, Reitsma PH, Lerolle N, Gandrille S, Dali-Ali F, et al. A comparative study of the protein C pathway in septic and nonseptic patients with organ failure. Am J Respir Crit Care Med 2007;176:878–85.10.1164/rccm.200611-1692OCSuche in Google Scholar PubMed

20. Collins PW, Macchiavello LI, Lewis SJ, Macartney NJ, Saayman AG, Luddington R, et al. Global tests of haemostasis in critically ill patients with severe sepsis syndrome compared to controls. Br J Haematol 2006;135:220–7.10.1111/j.1365-2141.2006.06281.xSuche in Google Scholar PubMed

21. American College of Chest Physicians, Society of Critical Care Medecine. Consensus conference: definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Crit Care Med 1992;20:864–74.10.1097/00003246-199206000-00025Suche in Google Scholar

22. Knaus WA, Draper EA, Wagner DP, Zimmerman JE. APACHE II: a severity of disease classification system. Crit Care Med 1985;13:818–29.10.1097/00003246-198510000-00009Suche in Google Scholar PubMed

23. Vincent JL, de Mendonça A, Cantraine F, Moreno R, Takala J, Suter PM, et al. Use of the SOFA score to assess the incidence of organ dysfunction/failure in intensive care units: results of a multicentric, prospective study. Crit Care Med 1998;26:1793–800.10.1097/00003246-199811000-00016Suche in Google Scholar PubMed

24. Exner T, Joseph JE, Connor D, Low J, Ma DD. Increased procoagulant phospholipid activity in blood from patients with suspected acute coronary syndromes: a pilot study. Blood Coagul Fibrinolysis 2005;16:375–9.10.1097/01.mbc.0000173465.45613.a3Suche in Google Scholar PubMed

25. Rousseau A, Favier R, Van Dreden P. Elevated circulating soluble thrombomodulin activity, tissue factor activity and circulating procoagulant phospholipids: new and useful markers for pre-eclampsia? Eur J Obstet Gynecol Reprod Biol 2009;146:46–9.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=000269598500009&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f310.1016/j.ejogrb.2009.06.001Suche in Google Scholar PubMed

26. Van Dreden P, Rousseau A, Savoure A, Lenormand B, Fontaine S, Vasse M. Plasma thrombomodulin activity, tissue factor activity and high levels of circulating procoagulant phospholipid as prognostic factors for acute myocardial infarction. Blood Coagul Fibrinolysis 2009;20:635–41.10.1097/MBC.0b013e32832e05ddhttp://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=000271551000004&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Suche in Google Scholar PubMed

27. Taylor FB Jr, Toh CH, Hoots WK, Wada H, Levi M, Scientific Subcommittee on Disseminated Intravascular Coagulation (DIC) of the International Society on Thrombosis and Haemostasis (ISTH). Towards definition, clinical and laboratory criteria, and a scoring system for disseminated intravascular coagulation. Thromb Haemost 2001;86:1327–30.10.1055/s-0037-1616068Suche in Google Scholar

28. Levi M, Schultz M, van der Poll T. Coagulation biomarkers in critically ill patients. Crit Care Clin 2011;27:281–97.10.1016/j.ccc.2010.12.009Suche in Google Scholar PubMed

29. Liaw PC, Esmon CT, Kahnamoui K, Schmidt S, Kahnamoui S, Ferrell G, et al. Patients with severe sepsis vary markedly in their ability to generate activated protein C. Blood 2004;104:3958–64.10.1182/blood-2004-03-1203Suche in Google Scholar PubMed

30. Levi M, van der Poll T. Recombinant human activated protein C: current insights into its mechanism of action. Crit Care 2007;11(Suppl 5):S3.10.1186/cc6154Suche in Google Scholar PubMed PubMed Central

31. Ammollo CT, Semeraro F, Xu J, Esmon NL, Esmon CT. Extracellular histones increase plasma thrombin generation by impairing thrombomodulin-dependent protein C activation. J Thromb Haemost 2011;9:1795–803.10.1111/j.1538-7836.2011.04422.xhttp://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=000294561400014&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Suche in Google Scholar PubMed

32. Schneider P, Van Dreden P, Rousseau A, Marie-Cardine A, Houivet E, Vannier JP, et al. Decreased activity of soluble thrombomodulin and plasma procoagulant phospholipids in childhood bone marrow transplantation with severe complications. Thromb Res 2011;128:261–7.10.1016/j.thromres.2011.03.017http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=000294000100012&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Suche in Google Scholar PubMed

33. Ohlin AK, Larsson K, Hansson M. Soluble thrombomodulin activity and soluble thrombomodulin antigen in plasma. J Thromb Haemost 2005;3:976–82.10.1111/j.1538-7836.2005.01267.xSuche in Google Scholar PubMed

34. Grey ST, Hancock WW. A physiologic anti-inflammatory pathway based on thrombomodulin expression and generation of activated protein C by human mononuclear phagocytes. J Immunol 1996;156:2256–63.10.4049/jimmunol.156.6.2256Suche in Google Scholar

35. Cicarelli DD, Vieira JE, Bensenor FE. C-reactive protein is not a useful indicator for infection in surgical intensive care units. Sao Paulo Med J 2009;127:350–4.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=000276642900006&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f310.1590/S1516-31802009000600006Suche in Google Scholar

36. Aharon A, Katzenell S, Tamari T, Brenner B. Microparticles bearing tissue factor and tissue factor pathway inhibitor in gestational vascular complications. J Thromb Haemost 2009,6:1047–50.10.1111/j.1538-7836.2009.03342.xhttp://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=000266244000026&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Suche in Google Scholar

37. Gando S, Kameue T, Morimoto Y, Matsuda N. Tissue factor production not balanced by tissue factor pathway inhibitor in sepsis promotes poor prognosis. Crit Care Med 2002;30: 1729–34.10.1097/00003246-200208000-00009Suche in Google Scholar PubMed

38. Levi M. The imbalance between tissue factor and tissue factor pathway inhibitor in sepsis. Crit Care Med 2002;30:1914–5.10.1097/00003246-200208000-00046Suche in Google Scholar PubMed

39. Belaaouaj AA, Li A, Wun TC, Welgus HG, Shapiro SD. Matrix metalloproteinases cleave tissue factor pathway inhibitor. Effects on coagulation. J Biol Chem 2000;275:27123–8.10.1016/S0021-9258(19)61488-2Suche in Google Scholar

40. Shimura M, Wada H, Nakasaki T, Hiyoyama K, Mori Y, Nishikawa M, et al. Increased truncated form of plasma tissue factor pathway inhibitor levels in patients with disseminated intravascular coagulation. Am J Hematol 1999;60: 94–8.10.1002/(SICI)1096-8652(199902)60:2<94::AID-AJH2>3.0.CO;2-ASuche in Google Scholar

41. Joop K, Berckmans RJ, Nieuwland R, Berkhout J, Romijn FP, Hack CE, et al. Microparticles from patients with multiple organ dysfunction syndrome and sepsis support coagulation through multiple mechanisms. Thromb Haemost 2001;85: 810–20.10.1055/s-0037-1615753Suche in Google Scholar PubMed

42. Seo JW, Kim HK, Kim JE, Park S, Cho HI. Prognostic values of the factor Xa-activated clotting time and endogenous thrombin potential in patients suspected of having disseminated intravascular coagulation. Thromb Res 2009;123:565–72.10.1016/j.thromres.2008.03.017Suche in Google Scholar

43. Soriano AO, Jy W, Chirinos JA, Valdivia MA, Velasquez HS, Jimenez JJ, et al. Levels of endothelial and platelet microparticles and their interactions with leukocytes negatively correlate with organ dysfunction and predict mortality in severe sepsis. Crit Care Med 2005;33:2540–6.10.1097/01.CCM.0000186414.86162.03Suche in Google Scholar PubMed

44. Mostefai HA, Meziani F, Mastronardi ML, Agouni A, Heymes C, Sargentini C, et al. Circulating microparticles from patients with septic shock exert protective role in vascular function. Am J Respir Crit Care Med 2008;178:1148–55.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=000261309400008&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f310.1164/rccm.200712-1835OCSuche in Google Scholar

45. Freyssinet JM. Cellular microparticles: what are they bad or good for? J Thromb Haemost 2003;1:1655–62.10.1046/j.1538-7836.2003.00309.xSuche in Google Scholar

46. Petros S, Kliem P, Siegemund T, Siegemund R. Thrombin generation in severe sepsis. Thromb Res 2012;129: 797–800.10.1016/j.thromres.2011.08.004Suche in Google Scholar PubMed

47. Mina A, Favaloro EJ, Koutts J. Relationship between short activated partial thromboplastin times, thrombin generation, procoagulant factors and procoagulant phospholipid activity. Blood Coagul Fibrinolysis 2012;23:203–7.10.1097/MBC.0b013e32834fa7d6http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=000302264600005&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Suche in Google Scholar PubMed

48. Dielis AW, Castoldi E, Spronk HM, van Oerle R, Hamulyák K, Ten C, et al. Coagulation factors and the protein C system as determinants of thrombin generation in a normal population. J Thromb Haemost 2008;6:125–31.10.1111/j.1538-7836.2007.02824.xSuche in Google Scholar PubMed

49. Della Valle P, Pavani G, D’Angelo A. The protein C pathway and sepsis. Thromb Res 2012;129:296–300.10.1016/j.thromres.2011.11.013http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=000301583200016&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3Suche in Google Scholar PubMed

50. Bongers TN, Emonts M, de Maat MP, de Groot R, Lisman T, Hazelzet JA, et al. Reduced ADAMTS13 in children with severe meningococcal sepsis is associated with severity and outcome. Thromb Haemost 2010;103:1181–7.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=000279000000010&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f310.1160/TH09-06-0376Suche in Google Scholar PubMed

Received: 2012-04-26
Accepted: 2012-07-23
Published Online: 2012-08-19
Published in Print: 2013-02-01

©2013 by Walter de Gruyter Berlin Boston

Artikel in diesem Heft

  1. Letters to the Editor
  2. Performance evaluation of three different immunoassays for detection of antibodies to hepatitis B core
  3. Serum homocysteine concentrations in Chinese children with autism
  4. Interchangeability of venous and capillary HbA1c results is affected by oxidative stress
  5. Interference of hemoglobin (Hb) N-Baltimore on measurement of HbA1c using the HA-8160 HPLC method
  6. First human isolate of Mycobacterium madagascariense in the sputum of a patient with tracheobronchitis
  7. Protein S and protein C measurements should not be undertaken during vitamin K antagonist therapy
  8. α2-HS glycoprotein is an essential component of cryoglobulin associated with chronic hepatitis C
  9. An unusual interference in CK MB assay caused by a macro enzyme creatine phosphokinase (CK) type 2 in HIV-infected patients
  10. An automated technique for the measurement of the plasma glutathione reductase activity and determination of reference limits for a healthy population
  11. Is osteopontin stable in plasma and serum?
  12. Evidence-based approach to reducing perceived wasteful practices in laboratory medicine
  13. Masthead
  14. Masthead
  15. Editorials
  16. Testing volume is not synonymous of cost, value and efficacy in laboratory diagnostics
  17. Lessons from controversy: biomarkers evaluation
  18. Commercial immunoassays in biomarkers studies: researchers beware!1)
  19. Trials and tribulations in lupus anticoagulant testing
  20. Reviews
  21. Mass spectrometry: a revolution in clinical microbiology?
  22. Chronic Chagas disease: from basics to laboratory medicine
  23. General Clinical Chemistry and Laboratory Medicine
  24. Shop for quality or quantity? Volumes and costs in clinical laboratories
  25. Minor improvement of venous blood specimen collection practices in primary health care after a large-scale educational intervention
  26. Evaluation of high resolution gel β2-transferrin for detection of cerebrospinal fluid leak
  27. Serum kallikrein-8 correlates with skin activity, but not psoriatic arthritis, in patients with psoriatic disease
  28. Soluble urokinase plasminogen activator receptor (suPAR) in the assessment of inflammatory activity of rheumatoid arthritis patients in remission
  29. Bone mass density selectively correlates with serum markers of oxidative damage in post-menopausal women
  30. Validation of a fast and reliable liquid chromatography-tandem mass spectrometry (LC-MS/MS) with atmospheric pressure chemical ionization method for simultaneous quantitation of voriconazole, itraconazole and its active metabolite hydroxyitraconazole in human plasma
  31. Performance of different screening methods for the determination of urinary glycosaminoclycans
  32. Intestinal permeability and fecal eosinophil-derived neurotoxin are the best diagnosis tools for digestive non-IgE-mediated cow’s milk allergy in toddlers
  33. An internal validation approach and quality control on hematopoietic chimerism testing after allogeneic hematopoietic cell transplantation
  34. Serum levels of IgG antibodies against oxidized LDL and atherogenic indices in HIV-1-infected patients treated with protease inhibitors
  35. Cooperation experience in a multicentre study to define the upper limits in a normal population for the diagnostic assessment of the functional lupus anticoagulant assays
  36. Contribution of procoagulant phospholipids, thrombomodulin activity and thrombin generation assays as prognostic factors in intensive care patients with septic and non-septic organ failure
  37. Suitability of POC lactate methods for fetal and perinatal lactate testing: considerations for accuracy, specificity and decision making criteria
  38. Point-of-care testing on admission to the intensive care unit: lactate and glucose independently predict mortality
  39. Reference Values and Biological Variations
  40. CA125 reference values change in male and postmenopausal female subjects
  41. Distributions and ranges of values of blood and urinary biomarker of inflammation and oxidative stress in the workers engaged in office machine manufactures: evaluation of reference values
  42. Cancer Diagnostics
  43. Association of acute phase protein-haptoglobin, and epithelial-mesenchymal transition in buccal cancer: a preliminary report
  44. Comparison of diagnostic and prognostic performance of two assays measuring thymidine kinase 1 activity in serum of breast cancer patients
  45. Evaluation of the BRAHMS Kryptor® Thyroglobulin Minirecovery Test in patients with differentiated thyroid carcinoma
Heruntergeladen am 16.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/cclm-2012-0262/html
Button zum nach oben scrollen