Startseite Mutagenesis and carcinogenesis caused by the oxidation of nucleic acids
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Mutagenesis and carcinogenesis caused by the oxidation of nucleic acids

  • Yusaku Nakabeppu , Kunihiko Sakumi , Katsumi Sakamoto , Daisuke Tsuchimoto , Teruhisa Tsuzuki und Yoshimichi Nakatsu
Veröffentlicht/Copyright: 11. April 2006
Biological Chemistry
Aus der Zeitschrift Band 387 Heft 4

Abstract

Genomes and their precursor nucleotides are highly exposed to reactive oxygen species, which are generated both as byproducts of oxygen respiration or molecular executors in the host defense, and by environmental exposure to ionizing radiation and chemicals. To counteract such oxidative damage in nucleic acids, mammalian cells are equipped with three distinct enzymes. MTH1 protein hydrolyzes oxidized purine nucleoside triphosphates, such as 8-oxo-2′-deoxyguanosine triphosphate and 2-hydroxy-2′-deoxyadenosine triphosphate (2-OH-dATP), to the corresponding monophosphates. We observed increased susceptibility to spontaneous carcinogenesis in MTH1-null mice, which exhibit an increased occurrence of A:T→C:G and G:C→T:A transversion mutations. 8-Oxoguanine (8-oxoG) DNA glycosylase, encoded by the OGG1 gene, and adenine DNA glycosylase, encoded by the MUTYH gene, are responsible for the suppression of G:C to T:A transversions caused by the accumulation of 8-oxoG in the genome. Deficiency of these enzymes leads to increased tumorigenesis in the lung and intestinal tract in mice, respectively. MUTYH deficiency may also increase G:C to T:A transversions through the misincorporation of 2-OH-dATP, especially in the intestinal tract, since MUTYH can excise 2-hydroxyadenine opposite guanine in genomic DNA and the repair activity is selectively impaired by a mutation found in patients with autosomal recessive colorectal adenomatous polyposis.

:

Corresponding author

References

Al-Tassan, N., Chmiel, N.H., Maynard, J., Fleming, N., Livingston, A.L., Williams, G.T., Hodges, A.K., Davies, D.R., David, S.S., Sampson, J.R., and Cheadle, J.P. (2002). Inherited variants of MYH associated with somatic G:C→T:A mutations in colorectal tumors. Nat. Genet.30, 227–232.10.1038/ng828Suche in Google Scholar

Ames, B., Shigenaga, M., and Hagen, T. (1993). Oxidants, antioxidants, and the degenerative diseases of aging. Proc. Natl. Acad. Sci. USA90, 7915–7922.10.1073/pnas.90.17.7915Suche in Google Scholar

Boiteux, S. and Radicella, J.P. (2000). The human OGG1 gene: structure, functions, and its implication in the process of carcinogenesis. Arch. Biochem. Biophys.377, 1–8.10.1006/abbi.2000.1773Suche in Google Scholar

Cai, J.P., Kakuma, T., Tsuzuki, T., and Sekiguchi, M. (1995). cDNA and genomic sequences for rat 8-oxo-dGTPase that prevents occurrence of spontaneous mutations due to oxidation of guanine nucleotides. Carcinogenesis16, 2343–2350.10.1093/carcin/16.10.2343Suche in Google Scholar

Chevillard, S., Radicella, J.P., Levalois, C., Lebeau, J., Poupon, M.F., Oudard, S., Dutrillaux, B., and Boiteux, S. (1998). Mutations in OGG1, a gene involved in the repair of oxidative DNA damage, are found in human lung and kidney tumours. Oncogene16, 3083–3086.10.1038/sj.onc.1202096Suche in Google Scholar

Egashira, A., Yamauchi, K., Yoshiyama, K., Kawate, H., Katsuki, M., Sekiguchi, M., Sugimachi, K., Maki, H., and Tsuzuki, T. (2002). Mutational specificity of mice defective in the MTH1 and/or the MSH2 genes. DNA Repair1, 881–893.10.1016/S1568-7864(02)00113-1Suche in Google Scholar

Englander, E.W., Hu, Z., Sharma, A., Lee, H.M., Wu, Z.H., and Greeley, G.H. (2002). Rat MYH, a glycosylase for repair of oxidatively damaged DNA, has brain-specific isoforms that localize to neuronal mitochondria. J. Neurochem.83, 1471–1480.10.1046/j.1471-4159.2002.01259.xSuche in Google Scholar PubMed

Fujii, Y., Shimokawa, H., Sekiguchi, M., and Nakabeppu, Y. (1999). Functional significance of the conserved residues for the 23-residue module among MTH1 and MutT family proteins. J. Biol. Chem.274, 38251–38259.10.1074/jbc.274.53.38251Suche in Google Scholar PubMed

Fujikawa, K., Kamiya, H., Yakushiji, H., Fujii, Y., Nakabeppu, Y., and Kasai, H. (1999). The oxidized forms of dATP are substrates for the human MutT homologue, the hMTH1 protein. J. Biol. Chem.274, 18201–18205.10.1074/jbc.274.26.18201Suche in Google Scholar PubMed

Fujikawa, K., Kamiya, H., Yakushiji, H., Nakabeppu, Y., and Kasai, H. (2001). Human MTH1 protein hydrolyzes the oxidized ribonucleotide, 2-hydroxy-ATP. Nucleic Acids Res.29, 449–454.10.1093/nar/29.2.449Suche in Google Scholar PubMed PubMed Central

Furuichi, M., Yoshida, M.C., Oda, H., Tajiri, T., Nakabeppu, Y., Tsuzuki, T., and Sekiguchi, M. (1994). Genomic structure and chromosome location of the human mutT homologue gene MTH1 encoding 8-oxo-dGTPase for prevention of A:T to C:G transversion. Genomics24, 485–490.10.1006/geno.1994.1657Suche in Google Scholar

Hayakawa, H., Hofer, A., Thelander, L., Kitajima, S., Cai, Y., Oshiro, S., Yakushiji, H., Nakabeppu, Y., Kuwano, M., and Sekiguchi, M. (1999). Metabolic fate of oxidized guanine ribonucleotides in mammalian cells. Biochemistry38, 3610–3614.10.1021/bi982361lSuche in Google Scholar

Hayashi, H., Tominaga, Y., Hirano, S., McKenna, A.E., Nakabeppu, Y., and Matsumoto, Y. (2002). Replication-associated repair of adenine:8-oxoguanine mispairs by MYH. Curr. Biol.12, 335–339.10.1016/S0960-9822(02)00686-3Suche in Google Scholar

Hirano, S., Tominaga, Y., Ichinoe, A., Ushijima, Y., Tsuchimoto, D., Honda-Ohnishi, Y., Ohtsubo, T., Sakumi, K., and Nakabeppu, Y. (2003). Mutator phenotype of MUTYH-null mouse embryonic stem cells. J. Biol. Chem.278, 38121–38124.10.1074/jbc.C300316200Suche in Google Scholar

Hollstein, M., Hergenhahn, M., Yang, Q., Bartsch, H., Wang, Z.Q., and Hainaut, P. (1999). New approaches to understanding p53 gene tumor mutation spectra. Mutat. Res.431, 199–209.10.1016/S0027-5107(99)00162-1Suche in Google Scholar

Ichinoe, A., Behmanesh, M., Tominaga, Y., Ushijima, Y., Hirano, S., Sakai, Y., Tsuchimoto, D., Sakumi, K., Wake, N., and Nakabeppu, Y. (2004). Identification and characterization of two forms of mouse MUTYH proteins encoded by alternatively spliced transcripts. Nucleic Acids Res.32, 477–487.10.1093/nar/gkh214Suche in Google Scholar PubMed PubMed Central

Isogawa, A. (2004). Functional cooperation of Ogg1 and Mutyh in preventing G:C→T:A transversions in mice. Fukuoka Igaku Zasshi95, 17–30.Suche in Google Scholar

Kakuma, T., Nishida, J., Tsuzuki, T., and Sekiguchi, M. (1995). Mouse MTH1 protein with 8-oxo-7,8-dihydro-2′-deoxyguanosine 5′-triphosphatase activity that prevents transversion mutation. cDNA cloning and tissue distribution. J. Biol. Chem.270, 25942–25948.10.1074/jbc.270.43.25942Suche in Google Scholar PubMed

Kamiya, H. and Kasai, H. (1995). Formation of 2-hydroxydeoxyadenosine triphosphate, an oxidatively damaged nucleotide, and its incorporation by DNA polymerases. Steady-state kinetics of the incorporation. J. Biol. Chem.270, 19446–19450.10.1074/jbc.270.33.19446Suche in Google Scholar PubMed

Kamiya, H., Maki, H., and Kasai, H. (2000). Two DNA polymerases of Escherichia coli display distinct misinsertion specifi-cities for 2-hydroxy-dATP during DNA synthesis. Biochemistry39, 9508–9513.10.1021/bi000683vSuche in Google Scholar PubMed

Kamiya, H., Iida, E., Murata-Kamiya, N., Yamamoto, Y., Miki, T., and Harashima, H. (2003). Suppression of spontaneous and hydrogen peroxide-induced mutations by a MutT-type nucleotide pool sanitization enzyme, the Escherichia coli Orf135 protein. Genes Cells8, 941–950.10.1046/j.1365-2443.2003.00688.xSuche in Google Scholar PubMed

Kimura, Y., Oda, S., Egashira, A., Kakeji, Y., Baba, H., Nakabeppu, Y., and Maehara, Y. (2004). A variant form of hMTH1, a human homologue of the E. coli mutT gene, correlates with somatic mutation in the p53 tumour suppressor gene in gastric cancer patients. J. Med. Genet.41, e57.Suche in Google Scholar

Klungland, A., Rosewell, I., Hollenbach, S., Larsen, E., Daly, G., Epe, B., Seeberg, E., Lindahl, T., and Barnes, D.E. (1999). Accumulation of premutagenic DNA lesions in mice defective in removal of oxidative base damage. Proc. Natl. Acad. Sci. USA96, 13300–13305.10.1073/pnas.96.23.13300Suche in Google Scholar PubMed PubMed Central

Kunisada, M., Sakumi, K., Tominaga, Y., Budiyanto, A., Ueda, M., Ichihashi, M., Nakabeppu, Y., and Nishigori, C. (2005). 8-Oxoguanine formation induced by chronic UVB exposure makes Ogg1 knockout mice susceptible to skin carcinogenesis. Cancer Res.65, 6006–6010.10.1158/0008-5472.CAN-05-0724Suche in Google Scholar PubMed

Maki, H. (2002). Origins of spontaneous mutations: specificity and directionality of base-substitution, frameshift, and sequence-substitution mutageneses. Annu. Rev. Genet.36, 279–303.10.1146/annurev.genet.36.042602.094806Suche in Google Scholar PubMed

Maki, H. and Sekiguchi, M. (1992). MutT protein specifically hydrolyses a potent mutagenic substrate for DNA synthesis. Nature355, 273–275.10.1038/355273a0Suche in Google Scholar PubMed

Massiah, M.A., Saraswat, V., Azurmendi, H.F., and Mildvan, A.S. (2003). Solution structure and NH exchange studies of the MutT pyrophosphohydrolase complexed with Mg2+ and 8-oxo-dGMP, a tightly bound product. Biochemistry42, 10140–10154.10.1021/bi030105pSuche in Google Scholar PubMed

Michaels, M.L., Cruz, C., Grollman, A.P., and Miller, J.H. (1992). Evidence that MutY and MutM combine to prevent mutations by an oxidatively damaged form of guanine in DNA. Proc. Natl. Acad. Sci. USA89, 7022–7025.10.1073/pnas.89.15.7022Suche in Google Scholar PubMed PubMed Central

Miller, J.H. (1996). Spontaneous mutators in bacteria: insights into pathways of mutagenesis and repair. Annu. Rev. Microbiol.50, 625–643.10.1146/annurev.micro.50.1.625Suche in Google Scholar PubMed

Minowa, O., Arai, T., Hirano, M., Monden, Y., Nakai, S., Fukuda, M., Itoh, M., Takano, H., Hippou, Y., Aburatani, H., Masumura, K., et al. (2000). Mmh/Ogg1 gene inactivation results in accumulation of 8-hydroxyguanine in mice. Proc. Natl. Acad. Sci. USA97, 4156–4161.10.1073/pnas.050404497Suche in Google Scholar PubMed PubMed Central

Mishima, M., Sakai, Y., Itoh, N., Kamiya, H., Furuichi, M., Takahashi, M., Yamagata, Y., Iwai, S., Nakabeppu, Y., and Shirakawa, M. (2004). Structure of human MTH1, a Nudix family hydrolase that selectively degrades oxidized purine nucleoside triphosphates. J. Biol. Chem.279, 33806–33815.10.1074/jbc.M402393200Suche in Google Scholar PubMed

Miyako, K., Kohno, H., Ihara, K., Kuromaru, R., Matsuura, N., and Hara, T. (2004). Association study of human MTH1 gene polymorphisms with type 1 diabetes mellitus. Endocr. J.51, 493–498.10.1507/endocrj.51.493Suche in Google Scholar PubMed

Mo, J.Y., Maki, H., and Sekiguchi, M. (1992). Hydrolytic elimination of a mutagenic nucleotide, 8-oxodGTP, by human 18-kilodalton protein: sanitization of nucleotide pool. Proc. Natl. Acad. Sci. USA89, 11021–11025.10.1073/pnas.89.22.11021Suche in Google Scholar

Nakabeppu, Y. (2001). Molecular genetics and structural biology of human MutT homolog, MTH1. Mutat. Res.477, 59–70.10.1016/S0027-5107(01)00096-3Suche in Google Scholar

Nishioka, K., Ohtsubo, T., Oda, H., Fujiwara, T., Kang, D., Sugimachi, K., and Nakabeppu, Y. (1999). Expression and differential intracellular localization of two major forms of human 8-oxoguanine DNA glycosylase encoded by alternatively spliced OGG1 mRNAs. Mol. Biol. Cell10, 1637–1652.10.1091/mbc.10.5.1637Suche in Google Scholar

Oda, H., Nakabeppu, Y., Furuichi, M., and Sekiguchi, M. (1997). Regulation of expression of the human MTH1 gene encoding 8-oxo-dGTPase. Alternative splicing of transcription products. J. Biol. Chem.272, 17843–17850.10.1074/jbc.272.28.17843Suche in Google Scholar

Oda, H., Taketomi, A., Maruyama, R., Itoh, R., Nishioka, K., Yakushiji, H., Suzuki, T., Sekiguchi, M., and Nakabeppu, Y. (1999). Multi-forms of human MTH1 polypeptides produced by alternative translation initiation and single nucleotide polymorphism. Nucleic Acids Res.27, 4335–4343.10.1093/nar/27.22.4335Suche in Google Scholar

Ohtsubo, T., Nishioka, K., Imaiso, Y., Iwai, S., Shimokawa, H., Oda, H., Fujiwara, T., and Nakabeppu, Y. (2000). Identification of human MutY homolog (hMYH) as a repair enzyme for 2-hydroxyadenine in DNA and detection of multiple forms of hMYH located in nuclei and mitochondria. Nucleic Acids Res.28, 1355–1364.10.1093/nar/28.6.1355Suche in Google Scholar

Parker, A.R., Gu, Y., Mahoney, W., Lee, S.H., Singh, K.K., and Lu, A.L. (2001). Human homolog of the MutY repair protein (hMYH) physically interacts with proteins involved in long patch DNA base excision repair. J. Biol. Chem.276, 5547–5555.10.1074/jbc.M008463200Suche in Google Scholar

Parker, A.R., O'Meally, R.N., Oliver, D.H., Hua, L., Nelson, W.G., DeWeese, T.L., and Eshleman, J.R. (2002). 8-Hydroxyguanosine repair is defective in some microsatellite stable colorectal cancer cells. Cancer Res.62, 7230–7233.Suche in Google Scholar

Russo, M., Blasi, M., Chiera, F., Fortini, P., Degan, P., Macpherson, P., Furuichi, M., Nakabeppu, Y., Karran, P., Aquilina, G., and Bignami, M. (2004). The oxidized deoxynucleoside triphosphate pool is a significant contributor to genetic instability in mismatch repair-deficient cells. Mol. Cell. Biol.24, 465–474.10.1128/MCB.24.1.465-474.2004Suche in Google Scholar

Sakai, Y., Furuichi, M., Takahashi, M., Mishima, M., Iwai, S., Shirakawa, M., and Nakabeppu, Y. (2002). A molecular basis for the selective recognition of 2-hydroxy-dATP and 8-oxo-dGTP by human MTH1. J. Biol. Chem.277, 8579–8587.10.1074/jbc.M110566200Suche in Google Scholar

Sakumi, K., Furuichi, M., Tsuzuki, T., Kakuma, T., Kawabata, S., Maki, H., and Sekiguchi, M. (1993). Cloning and expression of cDNA for a human enzyme that hydrolyzes 8-oxo-dGTP, a mutagenic substrate for DNA synthesis. J. Biol. Chem.268, 23524–23530.10.1016/S0021-9258(19)49494-5Suche in Google Scholar

Sakumi, K., Tominaga, Y., Furuichi, M., Xu, P., Tsuzuki, T., Sekiguchi, M., and Nakabeppu, Y. (2003). Ogg1 knockout-associated lung tumorigenesis and its suppression by Mth1 gene disruption. Cancer Res.63, 902–905.Suche in Google Scholar

Shibutani, S. (1993). Quantitation of base substitutions and deletions induced by chemical mutagens during DNA synthesis in vitro. Chem. Res. Toxicol.6, 625–629.10.1021/tx00035a006Suche in Google Scholar

Shibutani, S., Takeshita, M., and Grollman, A.P. (1991). Insertion of specific bases during DNA synthesis past the oxidation-damaged base 8-oxodG. Nature349, 431–434.10.1038/349431a0Suche in Google Scholar

Shimokawa, H., Fujii, Y., Furuichi, M., Sekiguchi, M., and Nakabeppu, Y. (2000). Functional significance of conserved residues in the phosphohydrolase module of Escherichia coli MutT protein. Nucleic Acids Res.28, 3240–3249.10.1093/nar/28.17.3240Suche in Google Scholar

Sieber, O.M., Lipton, L., Crabtree, M., Heinimann, K., Fidalgo, P., Phillips, R.K., Bisgaard, M.L., Orntoft, T.F., Aaltonen, L.A., Hodgson, S.V., et al. (2003). Multiple colorectal adenomas, classic adenomatous polyposis, and germ-line mutations in MYH. N. Engl. J. Med.348, 791–799.10.1056/NEJMoa025283Suche in Google Scholar

Slupska, M.M., Baikalov, C., Luther, W.M., Chiang, J.H., Wei, Y.F., and Miller, J.H. (1996). Cloning and sequencing a human homolog (hMYH) of the Escherichia coli mutY gene whose function is required for the repair of oxidative DNA damage. J. Bacteriol.178, 3885–3892.10.1128/jb.178.13.3885-3892.1996Suche in Google Scholar

Slupska, M.M., Luther, W.M., Chiang, J.H., Yang, H., and Miller, J.H. (1999). Functional expression of hMYH, a human homolog of the Escherichia coli MutY protein. J. Bacteriol.181, 6210–6213.10.1128/JB.181.19.6210-6213.1999Suche in Google Scholar

Stuart, J.A., Mayard, S., Hashiguchi, K., Souza-Pinto, N.C., and Bohr, V.A. (2005). Localization of mitochondrial DNA base excision repair to an inner membrane-associated particulate fraction. Nucleic Acids Res.33, 3722–3732.10.1093/nar/gki683Suche in Google Scholar

Tajiri, T., Maki, H., and Sekiguchi, M. (1995). Functional cooperation of MutT, MutM and MutY proteins in preventing mutations caused by spontaneous oxidation of guanine nucleotide in Escherichia coli. Mutat. Res.336, 257–267.10.1016/0921-8777(94)00062-BSuche in Google Scholar

Takahashi, M., Maraboeuf, F., Sakai, Y., Yakushiji, H., Mishima, M., Shirakawa, M., Iwai, S., Hayakawa, H., Sekiguchi, M., and Nakabeppu, Y. (2002). Role of tryptophan residues in the recognition of mutagenic oxidized nucleotides by human antimutator MTH1 protein. J. Mol. Biol.319, 129–139.10.1016/S0022-2836(02)00163-8Suche in Google Scholar

Tsuzuki, T., Egashira, A., Igarashi, H., Iwakuma, T., Nakatsuru, Y., Tominaga, Y., Kawate, H., Nakao, K., Nakamura, K., Ide, F., et al. (2001). Spontaneous tumorigenesis in mice defective in the MTH1 gene encoding 8-oxo-dGTPase. Proc. Natl. Acad. Sci. USA98, 11456–11461.10.1073/pnas.191086798Suche in Google Scholar PubMed PubMed Central

Ushijima, Y., Tominaga, Y., Miura, T., Daisuke Tsuchimoto, Sakumi, K., and Nakabeppu, Y. (2005). A functional analysis of the DNA glycosylase activity of mouse MUTYH protein excising 2-hydroxyadenine opposite guanine in DNA. Nucleic Acids Res.33, 672–682.10.1093/nar/gki214Suche in Google Scholar

Xie, Y., Yang, H., Cunanan, C., Okamoto, K., Shibata, D., Pan, J., Barnes, D.E., Lindahl, T., McIlhatton, M., Fishel, R., and Miller, J.H. (2004). Deficiencies in mouse Myh and Ogg1 result in tumor predisposition and G to T mutations in codon 12 of the K-ras oncogene in lung tumors. Cancer Res.64, 3096–3102.10.1158/0008-5472.CAN-03-3834Suche in Google Scholar

Yakushiji, H., Maraboeuf, F., Takahashi, M., Deng, Z.S., Kawabata, S., Nakabeppu, Y., and Sekiguchi, M. (1997). Biochemical and physicochemical characterization of normal and variant forms of human MTH1 protein with antimutagenic activity. Mutat. Res.384,181–194.10.1016/S0921-8777(97)00025-6Suche in Google Scholar

Yamaguchi, S., Shinmura, K., Saitoh, T., Takenoshita, S., Kuwano, H., and Yokota, J. (2002). A single nucleotide polymorphism at the splice donor site of the human MYH base excision repair genes results in reduced translation efficiency of its transcripts. Genes Cells7, 461–474.10.1046/j.1365-2443.2002.00532.xSuche in Google Scholar PubMed

Published Online: 2006-04-11
Published in Print: 2006-04-01

©2006 by Walter de Gruyter Berlin New York

Artikel in diesem Heft

  1. Highlight: chronic oxidative stress and cancer
  2. Risk factors and mechanisms of hepatocarcinogenesis with special emphasis on alcohol and oxidative stress
  3. Does Helicobacter pylori cause gastric cancer via oxidative stress?
  4. Oxidative and nitrative DNA damage in animals and patients with inflammatory diseases in relation to inflammation-related carcinogenesis
  5. Mutagenesis and carcinogenesis caused by the oxidation of nucleic acids
  6. Concomitant suppression of hyperlipidemia and intestinal polyp formation by increasing lipoprotein lipase activity in Apc-deficient mice
  7. Cancer-preventive anti-oxidants that attenuate free radical generation by inflammatory cells
  8. Evidence for attenuated cellular 8-oxo-7,8-dihydro-2′-deoxyguanosine removal in cancer patients
  9. The roles of ATP in the dynamics of the actin filaments of the cytoskeleton
  10. Chiral distinction between the enantiomers of bicyclic alcohols by UDP-glucuronosyltransferases 2B7 and 2B17
  11. A structural model of 20S immunoproteasomes: effect of LMP2 codon 60 polymorphism on expression, activity, intracellular localisation and insight into the regulatory mechanisms
  12. Role of the kinin B1 receptor in insulin homeostasis and pancreatic islet function
  13. Comparative proteomic analysis of neoplastic and non-neoplastic germ cell tissue
  14. BID, an interaction partner of protein kinase CK2α
  15. Monomeric and dimeric GDF-5 show equal type I receptor binding and oligomerization capability and have the same biological activity
  16. Novel ketomethylene inhibitors of angiotensin I-converting enzyme (ACE): inhibition and molecular modelling
  17. Identification of trypsin I as a candidate for influenza A virus and Sendai virus envelope glycoprotein processing protease in rat brain
  18. A fluorescence assay for rapid detection of ligand binding affinity to HIV-1 gp41
Heruntergeladen am 23.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/BC.2006.050/html
Button zum nach oben scrollen