A structural model of 20S immunoproteasomes: effect of LMP2 codon 60 polymorphism on expression, activity, intracellular localisation and insight into the regulatory mechanisms
-
Michele Mishto
Abstract
The immunoproteasome subunit low molecular weight protein 2 (LMP2) codon 60 polymorphism has been associated with autoimmune diseases. It has also been demonstrated to influence susceptibility to TNF-α-induced apoptosis in blood cells and proteasome activity in aged human brain. In the present study, an in silico model of immunoproteasome was used to examine the effect of the R60H polymorphism in the LMP2 subunit. The investigation of immunoproteasome expression, activity and intracellular localisation in an in vitro cellular model, namely lymphoblastoid cell lines, showed no major variations in functionality and amount, while a significant difference in antibody affinity was apparent. These data were integrated with previous results obtained in different tissues and combined with a structural model of the LMP2 polymorphism. Accordingly, we identified three prospective mechanisms that could explain the biological data for the polymorphism, such as modulation of the binding affinity of a putative non-catalytic modifier site on the external surface of the immunoproteasome core, or the modification of any channel between α and β rings.
References
Cardozo, C. and Michaud, C. (2002). Proteasome-mediated degradation of tau proteins occurs independently of the chymotrypsin-like activity by a non-processive pathway. Arch. Biochem. Biophys.408, 103–110.10.1016/S0003-9861(02)00493-9Suche in Google Scholar
Carrard, G., Bulteau, A.L., Petropoulos, I., and Friguet, B. (2002). Impairment of proteasome structure and function in aging. Int. J. Biochem. Cell Biol.34, 1461–1474.10.1016/S1357-2725(02)00085-7Suche in Google Scholar
Checler, F., da Costa, C.A., Ancolio, K., Chevallier, N., Lopez-Perez, E., and Marambaud, P. (2000). Role of the proteasome in Alzheimer's disease. Biochim. Biophys. Acta502, 133–138.10.1016/S0925-4439(00)00039-9Suche in Google Scholar
Chondrogianni, N., Petropoulos, I., Franceschi, C., Friguet, B., and Gonos, E.S. (2000). Fibroblast cultures from healthy centenarians have an active proteasome. Exp. Gerontol.35, 721–728.10.1016/S0531-5565(00)00137-6Suche in Google Scholar
Chondrogianni, N., Stratford, F.L., Trougakos, I.P., Friguet, B., Rivett, A.J., and Gonos, E.S. (2003). Central role of the proteasome in senescence and survival of human fibroblasts: induction of a senescence-like phenotype upon its inhibition and resistance to stress upon its activation. J. Biol. Chem.278, 28026–28037.10.1074/jbc.M301048200Suche in Google Scholar PubMed
Deng, G.Y., Muir, A., MacLaren, N.K., and She, J.X. (1995). Association of LMP2 and LMP7 genes within the major histocompatibility complex with insulin-dependent diabetes mellitus: population and family studies. Am. J. Hum. Genet.56, 528–534.Suche in Google Scholar
Eleuteri, A.M., Cuccioloni, M., Bellesi, J., Lupidi, G., Fioretti, E., and Angeletti, M. (2002). Interaction of Hsp90 with 20S proteasome: thermodynamic and kinetic characterization. Proteins48, 169–177.10.1002/prot.10101Suche in Google Scholar PubMed
Feldmann, M., Brennan, F.M., Paleolog, E., Cope, A., Taylor, P., Williams, R., Woody, J., and Maini, R.N. (2004). Anti-TNFα therapy of rheumatoid arthritis: what can we learn about chronic disease? Novartis Found. Symp.256, 53–69 (discussion 69–73, 106–111, 266–269).10.1002/0470856734.ch5Suche in Google Scholar
Feuillard, J., Schuhmacher, M., Kohanna, S., Asso-Bonnet, M., Ledeur, F., Joubert-Caron, R., Bissieres, P., Polack, A., Bornkamm, G.W., and Raphael, M. (2000). Inducible loss of NF-κB activity is associated with apoptosis and Bcl-2 down-regulation in Epstein-Barr virus-transformed B lymphocytes. Blood95, 2068–2075.10.1182/blood.V95.6.2068.2068Suche in Google Scholar
Frisan, T., Levitsky, V., Polack, A., and Masucci, M.G. (1998). Phenotype-dependent differences in proteasome subunit composition and cleavage specificity in B cell lines. J. Immunol.160, 3281–3289.10.4049/jimmunol.160.7.3281Suche in Google Scholar
Hayashi, T. and Faustman, D. (1999). NOD mice are defective in immunoproteasome production and activation of NF-κB. Mol. Cell. Biol.19, 8646–8659.10.1128/MCB.19.12.8646Suche in Google Scholar PubMed PubMed Central
Hayashi, T. and Faustman, D. (2000). Essential role of human leukocyte antigen-encoded Proteasome subunits in NF-κB activation and prevention of tumor necrosis factor-α-induced apoptosis. J. Biol. Chem.275, 5238–5247.10.1074/jbc.275.7.5238Suche in Google Scholar PubMed
Jayarapu, K. and Griffin, T.A. (2004). Protein-protein interactions among human 20S proteasome subunits and proteassemblin. Biochem. Biophys. Res. Commun.314, 523–528.10.1016/j.bbrc.2003.12.119Suche in Google Scholar
Keck, S., Nitsch, R., Grune, T., and Ullrich, O. (2003). Proteasome inhibition by paired helical filament-tau in brains of patients with Alzheimer's disease. J. Neurochem.85, 115–122.10.1046/j.1471-4159.2003.01642.xSuche in Google Scholar
Keller, C., Webb, A., and Davis, J. (2003). Cytokines in the seronegative spondyloarthropathies and their modification by TNF blockade: a brief report and literature review. Ann. Rheum. Dis.62, 1128–1132.10.1136/ard.2003.011023Suche in Google Scholar
Kisselev, A.F., Kaganovich, D., and Goldberg, A.L. (2002). Binding of hydrophobic peptides to several non-catalytic sites promotes peptide hydrolysis by all active sites of 20S proteasomes. Evidence for peptide-induced channel opening in the α-rings. J. Biol. Chem.277, 22260–22270.10.1074/jbc.M112360200Suche in Google Scholar
Kloetzel, P.M. (2001). Antigen processing by the proteasome. Nat. Rev.2, 179–187.10.1038/35056572Suche in Google Scholar
Kloetzel, P.M. (2004). Generation of major histocompatibility complex class I antigens: functional interplay between proteasomes and TPPII. Nat. Immunol.5, 661–669.10.1038/ni1090Suche in Google Scholar
Kroll, M., Conconi, M., Desterro, M.J., Marin, A., Thomas, D., Friguet, B., Hay, R.T., Virelizier, J.L., Arenzana-Seisdedos, F., and Rodriguez, M.S. (1997). The carboxy-terminus of IκBα determines susceptibility to degradation by the catalytic core of the proteasome. Oncogene15, 1841–1850.10.1038/sj.onc.1201560Suche in Google Scholar
Luciani, F. Kesmir, C., Mishto, M., Or-Guil, M., and Deboer, R. (2005). A mathematical model of protein degradation by the proteasome. Biophys. J.88, 2422–2432.10.1529/biophysj.104.049221Suche in Google Scholar
Maksymowych, W.P., Suarez-Almazor, M., Chou, C.T., and Russell, A.S. (1995). Polymorphism in the LMP2 gene influences susceptibility to extraspinal disease in HLA-B27 positive individuals with ankylosing spondylitis. Ann. Rheum. Dis.54, 321–324.10.1136/ard.54.4.321Suche in Google Scholar
Maksymowych, W.P., Tao, S., Vaile, J., Suarez-Almazor, M., Ramos-Remus, C., and Russell, A.S. (2000). LMP2 polymorphism is associated with extraspinal disease in HLA-B27 negative Caucasian and Mexican Mestizo patients with ankylosing spondylitis. J. Rheumatol.27, 183–189.Suche in Google Scholar
Mishto, M., Bonafe, M., Salvioli, S., Olivieri, F., and Franceschi, C. (2002). Age dependent impact of LMP polymorphisms on TNFα-induced apoptosis in human peripheral blood mononuclear cells. Exp. Gerontol.37, 301–308.10.1016/S0531-5565(01)00196-6Suche in Google Scholar
Mishto, M., Santoro, A., Bellavista, E., Bonafe, M., Monti, D., and Franceschi, C. (2003). Immunoproteasomes and immunosenescence. Ageing Res. Rev.2, 419–432.10.1016/S1568-1637(03)00030-8Suche in Google Scholar
Mishto, M., Bellavista, E., Santoro, A., Stolzing, A., Ligorio, C., Nacmias, B., Spazzafumo, L., Chiappelli, M., Licastro, F., Sorbi, S., et al. (2006). Immunoproteasome and LMP2 polymorphism in aged and Alzheimer's disease brains. Neurobiol. Ageing27, 54–66.10.1016/j.neurobiolaging.2004.12.004Suche in Google Scholar
Mukhopadhyay, A., Manna, S.K., and Aggarwal, B.B. (2000). Pervanadate-induced nuclear factor-κB activation requires tyrosine phosphorylation and degradation of IκBα. Comparison with tumor necrosis factor-α. J. Biol. Chem.275, 8549–8555.10.1074/jbc.275.12.8549Suche in Google Scholar
Pryhuber, K.G., Murray, K.J., Donnelly, P., Passo, M.H., Maksymowych, W.P., Glass, D.N., Giannini, E.H., and Colbert, R.A. (1996). Polymorphism in the LMP2 gene influences disease susceptibility and severity in HLA-B27 associated juvenile rheumatoid arthritis. J. Rheumatol.23, 747–752.Suche in Google Scholar
Rivett, A.J. and Hearn, A.R. (2004). Proteasome function in antigen presentation: immunoproteasome complexes, peptide production, and interactions with viral proteins. Curr. Protein Pept. Sci.5, 153–161.10.2174/1389203043379774Suche in Google Scholar
Rock, K.L. and Goldberg, A.L. (1999). Degradation of cell proteins and the generation of MHC class I-presented peptides. Annu. Rev. Immunol.17, 739–779.10.1146/annurev.immunol.17.1.739Suche in Google Scholar
Rock, K.L., Gramm, C., Rothstein, L., Clark, K., Stein, R., Dick, L., Hwang, D., and Goldberg, A.L. (1994). Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell78, 761–771.10.1016/S0092-8674(94)90462-6Suche in Google Scholar
Schmidtke, G., Emch, S., Groettrup, M., and Holzhütter, H.G. (2000). Evidence for the existence of a non-catalytic modifier site of peptide hydrolysis by the 20S proteasome. J. Biol. Chem.275, 22056–22063.10.1074/jbc.M002513200Suche in Google Scholar
Shevchenko, A., Wilm, M., Worm, O., and Mann, M. (1996). Mass spectrometric sequencing of proteins from silver stained polyacrylamide gels. Anal. Chem.68, 850–858.10.1021/ac950914hSuche in Google Scholar
Theobald, M., Ruppert, T., Kuckelkorn, U., Hernandez, J., Haussler, A., Ferreira, E.A., Liewer, U., Biggs, J., Levine, A.J., Huber, C., et al. (1998). The sequence alteration associated with a mutational hotspot in p53 protects cells from lysis by cytotoxic T lymphocytes specific for a flanking peptide epitope. J. Exp. Med.188, 1017–1028.10.1084/jem.188.6.1017Suche in Google Scholar
Unno, M., Mizushima, T., Morimoto, Y., Tomisugi, Y., Tanaka, K., Yasuoka, N., and Tsukihara, T. (2002). The structure of the mammalian 20S proteasome at 2.75 Å resolution. Structure10, 609–618.Suche in Google Scholar
Van Kaer, L., Ashton-Rickardt, P.G., Eichelberger, M., Gaczynska, M., Nagashima, K., Rock, K.L., Goldberg, A.L., Doherty, P.C., and Tonegawa, S. (1994). Altered peptidase and viral-specific T cell response in LMP2 mutant mice. Immunity1, 533–541.10.1016/1074-7613(94)90043-4Suche in Google Scholar
Vargas-Alarcon, G., Gamboa, R., Zuniga, J., Fragoso, J.M., Hernandez-Pacheco, G., Londono, J., Pacheco-Tena, C., Cardiel, M.H., Granados, J., and Burgos-Vargas, R. (2004). Association study of LMP gene polymorphisms in Mexican patients with spondyloarthritis. Hum. Immunol.65, 1437–1442.10.1016/j.humimm.2004.09.007Suche in Google Scholar
Voges, D., Zwickl, P., and Baumeister, W. (1999). The 26S proteasome: a molecular machine designed for controlled proteolysis. Annu. Rev. Biochem.68, 1015–1068.10.1146/annurev.biochem.68.1.1015Suche in Google Scholar
Wachlin, G., Augstein, P., Schroder, D., Kuttler, B., Kloting, I., Heinke, P., and Schmidt, S. (2003). IL-1β, IFN-γ and TNF-α increase vulnerability of pancreatic β cells to autoimmune destruction. J. Autoimmun.2, 303–312.10.1016/S0896-8411(03)00039-8Suche in Google Scholar
©2006 by Walter de Gruyter Berlin New York
Artikel in diesem Heft
- Highlight: chronic oxidative stress and cancer
- Risk factors and mechanisms of hepatocarcinogenesis with special emphasis on alcohol and oxidative stress
- Does Helicobacter pylori cause gastric cancer via oxidative stress?
- Oxidative and nitrative DNA damage in animals and patients with inflammatory diseases in relation to inflammation-related carcinogenesis
- Mutagenesis and carcinogenesis caused by the oxidation of nucleic acids
- Concomitant suppression of hyperlipidemia and intestinal polyp formation by increasing lipoprotein lipase activity in Apc-deficient mice
- Cancer-preventive anti-oxidants that attenuate free radical generation by inflammatory cells
- Evidence for attenuated cellular 8-oxo-7,8-dihydro-2′-deoxyguanosine removal in cancer patients
- The roles of ATP in the dynamics of the actin filaments of the cytoskeleton
- Chiral distinction between the enantiomers of bicyclic alcohols by UDP-glucuronosyltransferases 2B7 and 2B17
- A structural model of 20S immunoproteasomes: effect of LMP2 codon 60 polymorphism on expression, activity, intracellular localisation and insight into the regulatory mechanisms
- Role of the kinin B1 receptor in insulin homeostasis and pancreatic islet function
- Comparative proteomic analysis of neoplastic and non-neoplastic germ cell tissue
- BID, an interaction partner of protein kinase CK2α
- Monomeric and dimeric GDF-5 show equal type I receptor binding and oligomerization capability and have the same biological activity
- Novel ketomethylene inhibitors of angiotensin I-converting enzyme (ACE): inhibition and molecular modelling
- Identification of trypsin I as a candidate for influenza A virus and Sendai virus envelope glycoprotein processing protease in rat brain
- A fluorescence assay for rapid detection of ligand binding affinity to HIV-1 gp41
Artikel in diesem Heft
- Highlight: chronic oxidative stress and cancer
- Risk factors and mechanisms of hepatocarcinogenesis with special emphasis on alcohol and oxidative stress
- Does Helicobacter pylori cause gastric cancer via oxidative stress?
- Oxidative and nitrative DNA damage in animals and patients with inflammatory diseases in relation to inflammation-related carcinogenesis
- Mutagenesis and carcinogenesis caused by the oxidation of nucleic acids
- Concomitant suppression of hyperlipidemia and intestinal polyp formation by increasing lipoprotein lipase activity in Apc-deficient mice
- Cancer-preventive anti-oxidants that attenuate free radical generation by inflammatory cells
- Evidence for attenuated cellular 8-oxo-7,8-dihydro-2′-deoxyguanosine removal in cancer patients
- The roles of ATP in the dynamics of the actin filaments of the cytoskeleton
- Chiral distinction between the enantiomers of bicyclic alcohols by UDP-glucuronosyltransferases 2B7 and 2B17
- A structural model of 20S immunoproteasomes: effect of LMP2 codon 60 polymorphism on expression, activity, intracellular localisation and insight into the regulatory mechanisms
- Role of the kinin B1 receptor in insulin homeostasis and pancreatic islet function
- Comparative proteomic analysis of neoplastic and non-neoplastic germ cell tissue
- BID, an interaction partner of protein kinase CK2α
- Monomeric and dimeric GDF-5 show equal type I receptor binding and oligomerization capability and have the same biological activity
- Novel ketomethylene inhibitors of angiotensin I-converting enzyme (ACE): inhibition and molecular modelling
- Identification of trypsin I as a candidate for influenza A virus and Sendai virus envelope glycoprotein processing protease in rat brain
- A fluorescence assay for rapid detection of ligand binding affinity to HIV-1 gp41